Skip to main content
Log in

Modulation format recognition using CNN-based transfer learning models

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Transfer learning (TL) appears to be a potential method for transferring information from general to specialized activities. Unfortunately, experimenting using various TL models does not yield good results. In this paper, we propose a model built from scratch with the Hough transform (HT) of constellation diagrams to improve modulation format recognition. The HT is utilized to project points on the constellation diagrams on the Hough space. The HT translates constellation diagram points into lines. Features can then be extracted from the HT domain. Constellation diagrams for eight different modulation formats (2/4/8/16—PSK and 8/16/32/64—QAM) are obtained at optical signal-to-noise ratios (OSNRs) ranging from 5 to 30 dB. The proposed system is based on classification and TL. The obtained results indicate that even at low OSNR values, the proposed system can blindly recognize the wireless optical modulation format with a classification accuracy of up to 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

All data are available upon request from the corresponding author.

References

  • Adles, E.J., et al.: Blind optical modulation format identification from physical layer characteristics. J. Light Wave Technol. 32(8), 1501–1509 (2014). https://doi.org/10.1109/JLT.2014.2307555

    Article  ADS  Google Scholar 

  • Alimi, I., Shahpari, A., Sousa, A., Ferreira, R., Monteiro, P., Teixeira, A.: Challenges and opportunities of optical wireless communication technologies. https://doi.org/10.5772/intechopen.69113 (2017).

  • Eldemerdash, Y.A., Dobre, O.A., Member, S., Öner, M.: Signal identification for multiple antenna wireless systems: achievements and challenges. IEEE Commun. Surveys Tuts. 18(3), 1524–1551 (2016)

    Article  Google Scholar 

  • El-Hag, N.A., Sedik, A., El-Shafai, W., El-Hoseny, H.M., Khalaf, A.A., El-Fishawy, A.S., Al-Nuaimy, W., Abd El-Samie, F.E., El-Banby, G.M.: Classification of retinal images based on convolutional neural network. Microsc. Res. Tech. 84, 394–414 (2021)

    Article  Google Scholar 

  • El-Shafai, W., Almomani, I., AlKhayer, A.: Visualized malware multi-classification framework using fine-tuned CNN-based transfer learning models. Appl. Sci. 11, 6446 (2021). https://doi.org/10.3390/app11146446

    Article  Google Scholar 

  • Eltaieb, R.A., Abouelela, H.A.E., Saif, W.S., Ragheb, A., Farghal, A.E.A., Ahmed, H.E.H., Alshebeili, S., Shalaby, H.M.H., Abd El-Samie, F.E.: Modulation format identification of optical signals: an approach based on singular value decomposition of Stokes space projections. Appl. Opt. 59, 5989–6004 (2020)

    Article  ADS  Google Scholar 

  • Gioi, R., Jakubowicz, J., Morel, J., Randall, G.: On straight line segment detection. J. Math. Imag. vis. 32, 313–347 (2008). https://doi.org/10.1007/s10851-008-0102-5

    Article  MathSciNet  Google Scholar 

  • Hemalatha, J., Roseline, S.A., Geetha, S., Kadry, S., Damaševiˇcius, R.: An efficient densenet-based deep learning model for malware detection. Entropy 23, 344 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Jiang, L., et al.: Blind density-peak-based modulation format identification for elastic optical networks. J. Lightwave Technol. 36(14), 2850–2858 (2018). https://doi.org/10.1109/JLT.2018.2827118

    Article  ADS  Google Scholar 

  • Khademi, Z., Ebrahimi, F., Kordy, H.M.: A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals. Comput. Biol. Med. 143, 105288 (2022). https://doi.org/10.1016/j.compbiomed.2022.105288

    Article  Google Scholar 

  • Khan, F.N., Zhou, Y., Lau, A.P.T., Lu, C.: Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks. Opt. Express 20(11), 12422–12431 (2012). https://doi.org/10.1364/OE.20.012422

    Article  ADS  Google Scholar 

  • Khan, F.N., Zhong, K., Al-Arashi, W.H., Yu, C., Lu, C., Lau, A.P.T.: Modulation format identification in coherent receivers using deep machine learning. IEEE Photon. Technol. Lett. 28(17), 1886–1889 (2016). https://doi.org/10.1109/LPT.2016.2574800

    Article  ADS  Google Scholar 

  • Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  • Liang, T., Wang, K., Lim, C., Wong, E., Song, T., Nirmalathas, A.: Secure multiple access for indoor optical wireless communications with time-slot coding and chaotic phase. Opt. Express 25, 22046–22054 (2017)

    Article  ADS  Google Scholar 

  • Liu, G., Proietti, R., Zhang, K., Lu, H., Yoo, S.J.B.: Blind modulation format identification using nonlinear power transformation. Opt. Express 25(25), 30895–30904 (2017)

    Article  ADS  Google Scholar 

  • Martn, I., Troia, S., Hernández, J.A., Rodrguez, A., Musumeci, F., Maier, G., Alvizu, R., de Dios, Ó.G.: Machine learning-based routing and wavelength assignment in software-defined optical networks. IEEE Trans. Netw. Serv. Manage. 16, 871–883 (2019)

    Article  Google Scholar 

  • Mohamed, S.E.N., Al-Makhlasawy, R.M., Khalaf, A.A.M., Dessouky, M.I., El-Samie, F.E.A.: Modulation format recognition based on constellation diagrams and the Hough transform. Appl. Opt. 60, 9380–9389 (2021)

    Article  ADS  Google Scholar 

  • Musumeci, F., Rottondi, C., Nag, A., Macaluso, I., Zibar, D., Ruffini, M., Tornatore, M.: An overview on application of machine learning techniques in optical networks. Commun. Surveys Tuts. 21, 1383–1408 (2018)

    Article  Google Scholar 

  • Namanya, A.P., Awan, I.U., Disso, J.P., Younas, M.: Similarity hash based scoring of portable executable files for efficient malware detection in IoT. Future Gener. Comput. Syst. 110, 824–832 (2020)

    Article  Google Scholar 

  • Ni, S., Qian, Q., Zhang, R.: Malware identification using visualization images and deep learning. Comput. Secur. 77, 871–885 (2018)

    Article  Google Scholar 

  • Peng, Wu., Sun, B., Shaojing, Su., Wei, J., Zhao, J., Wen, X.: Automatic modulation classification based on deep learning for software-defined radio. Math. Problem. Eng. 2020, 13 (2020). https://doi.org/10.1155/2020/2678310

    Article  Google Scholar 

  • Ponnaluru, S., Penke, S.: A software-defined radio testbed for deep learning-based automatic modulation classification. Int. J. Commun. Syst. 33, 4556 (2020). https://doi.org/10.1002/dac.4556

    Article  Google Scholar 

  • Rezende, E., Ruppert, G., Carvalho, T., Ramos, F., De Geus, P.: Malicious software classification using transfer learning of resnet-50 deep neural network. In: Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, pp. 1011–1014 (2017).

  • Roseline, S.A., Hari, G., Geetha, S., Krishnamurthy, R.: Vision-based malware detection and classification using lightweight deep learning paradigm. In: Proceedings of the International Conference on Computer Vision and Image Processing, Jaipur, India, 27–29 September 2019, pp. 62–73. Springer, Singapore (2019).

  • Sun, Y., Ball, E.A.: Automatic modulation classification using techniques from image classification. IET Commun (2022). https://doi.org/10.1049/cmu2.12335

    Article  Google Scholar 

  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 2818–2826 (2016).

  • Tan, M.C., Khan, F.N., Al-Arashi, W.H., Zhou, Y., Lau, A.P.T.: Simultaneous optical performance monitoring and modulation format/bit-rate identification using principal component analysis. J. Opt. Commun. Netw. 6, 441–448 (2014)

    Article  Google Scholar 

  • Tsai, F., Chang, H.: Detection of vanishing points using Hough transform for Single View 3D reconstruction. In: 34th Asian Conference on Remote Sensing 2013, vol. 2, pp. 1182–1189. ACRS (2013).

  • Varun, R., Vivekanand-Kini, Y., Manikantan, K., Ramachandran, S.: Face recognition using hough transform based feature extraction. Proc. Comput. Sci. 46, 1491–1500 (2015). https://doi.org/10.1016/j.procs.2015.02.069

    Article  Google Scholar 

  • Wang, D., Zhang, M., Li, J., Li, Z., Li, J., Song, C., Chen, X.: Intelligent constellation diagram analyzer using convolutional neural network-based deep learning. Opt. Express 25(15), 17150–17166 (2017)

    Article  ADS  Google Scholar 

  • Zeng, D., Zeng, X., Cheng, H., Tang, B.: Automatic modulation classification of radar signals using the Rihaczek distribution and Hough transform. IET Radar Sonar Navig. 6, 322–331 (2012). https://doi.org/10.1049/iet-rsn.2011.0338

    Article  Google Scholar 

  • Zibar, D., Piels, M., Jones, R., Schäeffer, C.G.: Machine learning techniques in optical communication. J. Lightwave Technol. 34, 1442–1452 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors are equally contributed.

Corresponding author

Correspondence to Safie El-Din Nasr Mohamed.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable. The manuscript does not contain any human or animal studies.

Consent to participate

All authors are contributing and accepting to submit the current work.

Consent to publish

All authors are accepting to submit and publish the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, S.ED.N., Mortada, B., Ali, A.M. et al. Modulation format recognition using CNN-based transfer learning models. Opt Quant Electron 55, 343 (2023). https://doi.org/10.1007/s11082-022-04454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04454-5

Keyword

Navigation