Skip to main content
Log in

On Straight Line Segment Detection

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper we propose a comprehensive method for detecting straight line segments in any digital image, accurately controlling both false positive and false negative detections. Based on Helmholtz principle, the proposed method is parameterless. At the core of the work lies a new way to interpret binary sequences in terms of unions of segments, for which a dynamic programming implementation is given. The proposed algorithm is extensively tested on synthetic and real images and compared with the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almansa, A.: Echantillonnage, interpolation et détection. Applications en imagerie satellitaire. Ph.D. thesis, ENS Cachan (2002)

  2. Almansa, A., Desolneux, A., Vamech, S.: Vanishing point detection without any a priori information. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 502–507 (2003)

    Article  Google Scholar 

  3. Arias-Castro, E., Donoho, D.L., Huo, X.: Near-optimal detection of geometric objects by fast multiscale methods. IEEE Trans. Inf. Theory 51(7), 2402–2425 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)

    Google Scholar 

  5. Cao, F., Delon, J., Desolneux, A., Musé, P., Sur, F.: An a contrario approach to hierarchical clustering validity assessment. Preprint CMLA No. 2004-13 (2003)

  6. Cao, F., Delon, J., Desolneux, A., Musé, P., Sur, F.: A unified framework for detecting groups and application to shape recognition. J. Math. Imaging Vis. 27(2), 91–119 (2007)

    Article  MATH  Google Scholar 

  7. Cao, F., Musé, P., Sur, F.: Extracting meaningful curves from images. J. Math. Imaging Vis. 22(2), 159–181 (2005)

    Article  Google Scholar 

  8. Copeland, A.C., Ravichandran, G., Trivedi, M.M.: Radon transform based ship-wake detection. GeoRS 33(1), 35–45 (1995)

    Google Scholar 

  9. Deans, S.R.: Hough transform from the radon transform. IEEE Trans. Pattern Anal. Mach. Intell. 3, 185–188 (1981)

    Article  Google Scholar 

  10. Delon, J., Desolneux, A., Lisani, J.-L., Petro, A.-B.: A nonparametric approach for histogram segmentation. IEEE Trans. Image Process. 16(1), 253–261 (2007)

    Article  MathSciNet  Google Scholar 

  11. Deriche, R., Faugeras, O.: Tracking line segments. J. Image Vis. Comput. 8(4), 261–270 (1990)

    Article  Google Scholar 

  12. Desolneux, A., Moisan, L., Morel, J.-M.: Maximal meaningful events and applications to image analysis. Technical Report 2000-22, CMLA, ENS-CACHAN (2000). Available at http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2000/CMLA2000-22.ps.gz

  13. Desolneux, A., Moisan, L., Morel, J.-M.: Meaningful alignments. Int. J. Comput. Vis. 40(1), 7–23 (2000)

    Article  MATH  Google Scholar 

  14. Desolneux, A., Moisan, L., Morel, J.-M.: Edge detection by Helmholtz principle. J. Math. Imaging Vis. 14(3), 271–284 (2001)

    Article  MATH  Google Scholar 

  15. Desolneux, A., Moisan, L., Morel, J.-M.: From Gestalt Theory to Image Analysis. Interdisciplinary Applied Mathematics, vol. 35. Springer, New York (2007)

    Google Scholar 

  16. Faugeras, O., Deriche, R., Mathieu, H., Ayache, N.J., Randall, G.: The depth and motion analysis machine. PRAI 6, 353–385 (1992)

    Google Scholar 

  17. Fernández, F.: Mejoras al detector de alineamientos. Technical Report, InCO, Universidad de la República, Uruguay (2006)

  18. Fränti, P., Ageenko, E.I., Kälviäinen, H., Kukkonen, S.: Compression of line drawing images using hough transform for exploiting global dependencies. In: JCIS 1998 (1998)

  19. Geman, D., Jedynak, B.: An active testing model for tracking roads in satellite images. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 1–14 (1996)

    Article  Google Scholar 

  20. Giai Checa, B., Bouthemy, P., Vieville, T.: Segment-based detection of moving objects in a sequence of images. In: ICPR94, pp. 379–383 (1994)

  21. Grompone von Gioi, R., Jakubowicz, J.: On computational gestalt detection thresholds. J. Physiol.—Paris (2008, to appear). http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepub-lications/2007/CMLA2007-26.pdf

  22. Hough, P.V.C.: Method and means for recognizing complex patterns. U.S. Patent 3,069,654, 18 December 1962

  23. Igual, L.: Image segmentation and compression using the tree of shapes of an image. Motion estimation. Ph.D. Thesis, Universitat Pompeu Fabra (2006)

  24. Igual, L., Preciozzi, J., Garrido, L., Almansa, A., Caselles, V., Rougé, B.: Automatic low baseline stereo in urban areas. Inverse Probl. Imaging 1(2), 319–348 (2007)

    MATH  MathSciNet  Google Scholar 

  25. Illingworth, J., Kittler, J.: A survey of the Hough transform. Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988)

    Article  Google Scholar 

  26. Ji, C.X., Zhang, Z.P.: Stereo match based on linear feature. In: ICPR88, pp. 875–878 (1988)

  27. Kälviäinen, H., Hirvonen, P., Oja, E.: Houghtool—a software package for the use of the Hough transform. Pattern Recognit. Lett. 17, 889–897 (1996)

    Article  Google Scholar 

  28. Kanizsa, G.: Grammatica del Vedere. Il Mulino (1980)

  29. Kelvin, L.: On ship waves. Proc. Inst. Mech. Eng. 3 (1887)

  30. Lacoste, C., Descombes, X., Zerubia, J., Baghdadi, N.: Bayesian geometric model for line network extraction from satellite images. In: Proceedings (ICASSP ’04). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 3:iii–565–8, vol. 3, 17–21 May 2004

  31. Leavers, V.F.: Survey: Which Hough transform? CVGIP: Image Underst. 58(2), 250–264 (1993)

    Article  Google Scholar 

  32. Lee, Y.-S., Koo, H.-S., Jeong, C.-S.: A straight line detection using principal component analysis. Pattern Recognit. Lett. 27(14), 1744–1754 (2006)

    Article  Google Scholar 

  33. Lindenbaum, M.: An integrated model for evaluating the amount of data required for reliable recognition. IEEE Trans. Patern. Anal. Mach. Intell. 19(11), 1251–1264 (1997)

    Article  Google Scholar 

  34. Lowe, D.: Perceptual Organization and Visual Recognition. Kluwer Academic, Dordrecht (1985)

    Google Scholar 

  35. Magli, E., Olmo, G., Lo Presti, L.: On-board selection of relevant images: an application to linear feature recognition. IEEE Trans. Image Process. 10(4), 543–553 (2001)

    Article  MATH  Google Scholar 

  36. Mahadevan, S., Casasent, D.P.: Detection of triple junction parameters in microscope images. In: SPIE, pp. 204–214 (2001)

  37. Matas, J., Galambos, C., Kittler, J.V.: Progressive probabilistic Hough transform. In: BMVC98 (1998)

  38. Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. Int. J. Comput. Vis. 57(3), 201–218 (2004)

    Article  Google Scholar 

  39. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9(5), 860–872 (2000)

    Article  Google Scholar 

  40. Musé, P.: On the definition and recognition of planar shapes in digital images. Ph.D. Thesis, ENS Cachan (2004)

  41. Musé, P., Sur, F., Cao, F., Gousseau, Y.: Unsupervised thresholds for shape matching. In: IEEE Int. Conf. Image Process., ICIP (2003)

  42. Preciozzi, J.: Dense urban elevation models from stereo images by an affine region merging approach. Master’s Thesis, Universidad de la República, Montevideo, Uruguay (2006)

  43. Princen, J., Illingworth, J., Kittler, J.V.: Hypothesis testing: a framework for analysing and optimizing Hough transform performance. IEEE Trans. Patern. Anal. Mach. Intell. 16(4), 329–341 (1994)

    Article  Google Scholar 

  44. Rosenfeld, A.: Picture Processing by Computer. Academic Press, New York (1969)

    MATH  Google Scholar 

  45. Rosenfeld, A.: Digital straight line segments. TC 23(12), 1264–1269 (1974)

    MATH  MathSciNet  Google Scholar 

  46. Shaffer, J.P.: Multiple hypothesis testing. Annu. Rev. Psychol. 46, 561–584 (1995)

    Article  Google Scholar 

  47. Shaked, D., Yaron, O., Kiryati, N.: Deriving stopping rules for the probabilistic hough transform by sequential-analysis. Comput. Vis. Image Underst. 63(3), 512–526 (1996)

    Article  Google Scholar 

  48. Stoica, R., Descombes, X., Zerubia, J.: A Gibbs point process for road extraction from remotely sensed images. Int. J. Comput. Vis. 57(2), 121–136 (2004)

    Article  Google Scholar 

  49. Sur, F.: A contrario decision for shape recognition. Ph.D. Thesis, ENS Cachan (2004)

  50. Tupin, F., Maître, H., Mangin, J.-F., Nicolas, J.-M., Pechersky, E.: Detection of linear features in SAR images: application to the road network extraction. IEEE Trans. Geosci. Remote Sens. 36(2), 434–453 (1998)

    Article  Google Scholar 

  51. Zheng, Y., Li, H., Doermann, D.: A parallel-line detection algorithm based on HMM decoding. IEEE Trans. PAMI 27(5) (2005)

  52. Zhu, Y., Carragher, B., Kriegman, D., Milligan, R., Potter, C.: Automated identification of filaments in cryo-electron microscopy images. J. Struct. Biol. 135, 302–312 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Grompone von Gioi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grompone von Gioi, R., Jakubowicz, J., Morel, JM. et al. On Straight Line Segment Detection. J Math Imaging Vis 32, 313–347 (2008). https://doi.org/10.1007/s10851-008-0102-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-008-0102-5

Keywords

Navigation