Skip to main content
Log in

Non-linear effects of quadratic coupling and Kerr medium in a hybrid optomechanical cavity system

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We investigate theoretically, the optical response for a cavity optomechanical system containing a Kerr non-linear substrate. The optomechanical cavity’s moving membrane interacts linearly and quadratically with the radiation pressure of the photons. We found that the quadratic non-linear coupling and Kerr non-linearity strongly influence the system’s optical multistability. Further, the transmission spectrum is observed under the influence of both non-linearities. Our theoretical results show that the width of the spectrum alters significantly by tuning the non-linearities present in the system. In addition, our results show that a peculiar positive value of quadratic optomechanical coupling is instrumental in generating Normal Mode splitting while the absence and negative value of quadratic optomechanical coupling inhibit the Normal-Mode splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Akram, M.J., Khan, M.M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A 92, 023846 (2015)

    Article  ADS  Google Scholar 

  • Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity Optomechanics: Nano-and Micromechanical Resonators Interacting with Light. Springer, Heidelberg (2014)

    Book  Google Scholar 

  • Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. of Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  • Aspelmeyer, M., Meystre, P., Schwab, K.: Quantum optomechanics. Phys. Today 65, 29 (2012)

    Article  Google Scholar 

  • Bhattacharya, M., Meystre, P.: Multiple membrane cavity optomechanics. Phys. Rev. A 78, 041801(R) (2008)

    Article  ADS  Google Scholar 

  • Bhattacharya, M., Uys, H., Meystre, P.: Optomechanical trapping and cooling of partially reflective mirrors. Phys. Rev. A 77, 033819 (2008)

    Article  ADS  Google Scholar 

  • Bhattacherjee, A.B.: Cavity quantum optomechanics of ultracold atoms in an optical lattice: Normal-mode splitting. Phys. Rev. A 80, 043607 (2009)

    Article  ADS  Google Scholar 

  • Boyd, R. W.: Nonlinear Optics, Academic (2003)

  • Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235 (2008)

    Article  ADS  Google Scholar 

  • Caves, C.M.: Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75 (1980)

    Article  ADS  Google Scholar 

  • Connell, O., Hofheinz, A.D., ansmann, M.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697703 (2010)

    Google Scholar 

  • Dalafi, A., Naderi, M.H., Motazedifard, A.: Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate. Phys. Rev. A 97, 043619 (2018)

    Article  ADS  Google Scholar 

  • Dobrindt, J.M., Wilson-Rae, I., Kippenberg, T.J.: Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008)

    Article  ADS  Google Scholar 

  • Dong, C., Zhang, J., Fiore, V., Wang, H.: Optomechanically induced transparency and self-induced oscillations with Bogoliubov mechanical modes. Optica 1, 425 (2014)

    Article  ADS  Google Scholar 

  • Doolin, C., Hauer, B.D., Kim, P.H., MacDonald, A.J.R., Ramp, H., Davis, J.P.: Nonlinear optomechanics in the stationary regime. Phys. Rev. A 89, 053838 (2014)

    Article  ADS  Google Scholar 

  • Flowers-Jacobs, N.E., Hoch, S.W., Sankey, J.C., Kashkanova, A., Jayich, A.M., Deutsch, C., Reichel, J., Harris, J.G.E.: Fiber-cavity-based optomechanical device. Appl. Phys. Lett. 101, 221109 (2012)

    Article  ADS  Google Scholar 

  • Gao, M., Lei, F.C., Du, C.G., Long, G.L.: Self-sustained oscillation and dynamical multistability of optomechanical systems in the extremely-large-amplitude regime. Phys. Rev. A 91, 013833 (2015)

    Article  ADS  Google Scholar 

  • Gardiner, C.W., Collett, M.J.: Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  • Genes, C., Ritsch, H., Drewsen, M., Dantan, A.: Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency. Phys. Rev. A 84, 051801 (2011)

    Article  ADS  Google Scholar 

  • Giner, L., Veissier, L., Sparkes, B., et al.: Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models. Phys. Rev. A 87, 013823 (2013)

    Article  ADS  Google Scholar 

  • Giovannetti, V., Tombesi, P., Vitali, D.: Non-Markovian quantum feedback from homodyne measurements: the effect of a nonzero feedback delay time. Phys. Rev. A 60, 1549 (1999)

    Article  ADS  Google Scholar 

  • Giovannetti, V., Vitali, D.: Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Phys. Rev. A 63, 023812 (2001)

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I. M.: Table of Integrals: Series and Products; Academic Press: Orlando (1980); A. Hurwitz Selected Papers on Mathematical Trends in Control Theory; R. Bellman, R. Kabala, (Eds). Dover, New York, (1964)

  • Groblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724 (2009)

    Article  ADS  Google Scholar 

  • He, Y.: Optomechanically induced transparency associated with steady-state entanglement. Phys. Rev. A 91, 013827 (2015)

    Article  ADS  Google Scholar 

  • He, Q., Badshah, F., Alharbi, T., Li, L., Yang, L.: Normal-mode splitting in a linear and quadratic optomechanical system with an ensemble of two-level atoms. J. Opt. Soc. Am. B 37, 148 (2020)

    Article  ADS  Google Scholar 

  • He, Q., Badshah, F., Din, R.U., Zhang, H.Y., Hu, Y., Ge, G.Q.: Optomechanically induced transparency and the long-lived slow light in a nonlinear system. J. Opt. Soc. Am. B 35, 1649 (2018)

    Article  ADS  Google Scholar 

  • He, Q., Badshah, F., Din, R.U., Zhang, H.Y., Hu, Y., Ge, G.Q.: Multiple transparency in a multimode quadratic coupling optomechanical system with an ensemble of three-level atoms. J. Opt. Soc. Am. B 35, 2550 (2018)

    Article  ADS  Google Scholar 

  • Hou, B.P., Wei, L.F., Wang, S.J.: Optomechanically induced transparency and absorption in hybridized optomechanical systems. Phys. Rev. A 92, 033829 (2015)

    Article  ADS  Google Scholar 

  • Huang, S.: Double electromagnetically induced transparency and narrowing of probe absorption in a ring cavity with nanomechanical mirrors. J. Phys. B: At., Mol. Opt. Phys. 47, 055504 (2014)

    Article  ADS  Google Scholar 

  • Huang, S., Agarwal, G.S.: Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity. Phys. Rev. A 80, 033807 (2009)

    Article  ADS  Google Scholar 

  • Huang, S., Agarwal, G.S.: Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys. Rev. A 83, 023823 (2011)

    Article  ADS  Google Scholar 

  • Huang, Y.X., Zhou, X.F., Guo, G.C., Zhang, Y.S.: Dark state in a nonlinear optomechanical system with quadratic coupling. Phys. Rev. A 92, 013829 (2015)

    Article  ADS  Google Scholar 

  • Imamoglu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)

    Article  ADS  Google Scholar 

  • Jayich, A.M., Sankey, J.C., Zwickl, B.M., Yang, C., Thompson, J.D., Girvin, S.M., Clerk, A.A., Marquardt, F., Harris, J.G.E.: Dispersive optomechanics: a membrane inside a cavity. New J. Phys. 10, 095008 (2008)

    Article  ADS  Google Scholar 

  • Jiang, C., Bian, X., Cui, Y., Chen, G.: Optical bistability and dynamics in an optomechanical system with a two-level atom. J. Opt. Soc. Am. B 33, 2099 (2016)

    Article  ADS  Google Scholar 

  • Jiang, C., Cui, Y., Chen, G.: Dynamics of an optomechanical system with quadratic coupling: Effect of first order correction to adiabatic elimination. Sci. Rep. 6, 35583 (2016)

    Article  ADS  Google Scholar 

  • Jiao, Y.F., Lu, T.X., Jing, H.: Optomechanical second-order sidebands and group delays in a Kerr resonator. Phys. Rev. A 97, 013843 (2018)

    Article  ADS  Google Scholar 

  • Karuza, M., Biancofiore, C., Bawaj, M., Molinelli, C., Galassi, M., Natali, R., Tombesi, P., Giuseppe, G.D., Vitali, D.: Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys. Rev. A 88, 013804 (2013)

    Article  ADS  Google Scholar 

  • Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  • Klinner, J., Lindholdt, M., Nagorny, B., Hemmerich, A.: Normal mode splitting and mechanical effects of an optical lattice in a ring cavity. Phys. Rev. Lett. 96, 023002 (2006)

    Article  ADS  Google Scholar 

  • Kong, C., Xiong, H., Wu, Y.: Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system. Phys. Rev. A 95, 033820 (2017)

    Article  ADS  Google Scholar 

  • Kronwald, A., Marquardt, F.: Optomechanically induced transparency in the nonlinear quantum regime. Phys. Rev. Lett. 111, 133601 (2013)

    Article  ADS  Google Scholar 

  • Kumar, T., Bhattacherjee, A.B., Mohan, M.: Dynamics of a movable micromirror in a nonlinear optical cavity. Phys. Rev. A 81, 013835 (2010)

    Article  ADS  Google Scholar 

  • Kumar, T., Yadav, S., Bhatacherjee, A.B.: Optical response properties of a hybrid electro-optomechanical system interacting with a qubit. J. Mod. Opt. 69, 323 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  • Lai, D.-G., Wang, X., Qin, W., Hou, B.-P., Nori, F., Liao, J.-Q.: Tunable optomechanically induced transparency by controlling the dark-mode effect. Phys. Rev. A 102, 023707 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Lee, J.H., Seok, H.: Quantum reservoir engineering through quadratic optomechanical interaction in the reversed dissipation regime. Phys. Rev. A 97, 013805 (2018)

    Article  ADS  Google Scholar 

  • Li, J.J., He, W., Zhu, K.D.: All-optical Kerr modulator based on a carbon nanotube resonator. Phys. Rev. B 83, 115445 (2011)

    Article  ADS  Google Scholar 

  • Liao, J.Q., Nori, F.: Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013)

    Article  ADS  Google Scholar 

  • Liao, J.Q., Nori, F.: Single-photon quadratic optomechanics. Sci. Rep. 8, 6302 (2014)

    Article  Google Scholar 

  • Liu, S., Yang, W.-X., Zhu, Z., Shui, T., Li, L.: Quadrature squeezing of a higher-order sideband spectrum in cavity optomechanics. Opt. Lett. 43, 9 (2018)

    Article  ADS  Google Scholar 

  • Loudon, R.: Quantum limit on the Michelson interferometer used for gravitational-wave detection. Phys. Rev. Lett. 47, 815 (1981)

    Article  ADS  Google Scholar 

  • Lu, H., Wang, C., Yang, L., Jing, H.: Optomechanically induced transparency at exceptional points. Phys. Rev. Appl. 10, 014006 (2018)

    Article  ADS  Google Scholar 

  • Lu, X.Y., Wu, J., Zheng, L.L., Zhan, Z.M.: Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules. Phys. Rev. A 83, 042302 (2011)

    Article  ADS  Google Scholar 

  • Ma, P.C., Zhang, J.Q., Xiao, Y., Feng, M., Zhang, Z.-M.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A 90, 043825 (2014)

    Article  ADS  Google Scholar 

  • Mahajan, S., Aggarwal, N., Bhattacherjee, A.B., Mohan, M.: Achieving the quantum ground state of a mechanical oscillator using a Bose-Einstein condensate with back-action and cold damping feedback schemes. J. Phys. B: At. Mol. Opt. Phys. 46, 085301 (2013)

    Article  ADS  Google Scholar 

  • Mahajan, S., Bhattacherjee, A.B.: Controllable nonlinear effects in a hybrid optomechanical semiconductor microcavity containing a quantum dot and Kerr medium. J. Mod. Opt. 66, 652 (2019)

    Article  ADS  Google Scholar 

  • Mahajan, S., Kumar, T., Bhattacherjee, A.B.: Ground-state cooling of a mechanical oscillator and detection of a weak force using a Bose-Einstein condensate. Phys. Rev. A 87, 013621 (2013)

    Article  ADS  Google Scholar 

  • Mancini, S., Vitali, D., Tombesi, P.: Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Phys. Rev. Lett. 80, 688 (1998)

    Article  ADS  Google Scholar 

  • Marquardt, F., Girvin, S.: Optomechanics. Physics 2, 40 (2009)

    Article  Google Scholar 

  • Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Motazedifard, A., Bemani, F., Naderi, M.H., Roknizadeh, R., Vitali, D.: Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New J. Phys. 18, 073040 (2016)

    Article  ADS  Google Scholar 

  • Nunnenkamp, A., Borkje, K., Harris, J.G.E., Girvin, S.M.: Cooling and squeezing via quadratic optomechanical coupling. Phys. Rev. A 82, 021806 (2010)

    Article  ADS  Google Scholar 

  • Paternostro, M., Vitali, D., Gigan, S., Kim, M.S., Brunker, C., Eisert, J., Aspelmeyer, M.: Creating and probing multipartite macroscopic entanglement with light. Phys. Rev. Lett. 99, 250401 (2007)

    Article  ADS  Google Scholar 

  • Prakash, V.N., Bhattacherjee, A.B.: Negative effective mass, optical multistability and Fano line-shape control via mode tunnelling in double cavity optomechanical system. J. Mod. Opt. 66, 1611 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Purdy, T.P., Brooks, D.W.C., Botter, T., Brahms, N., Ma, Z.-Y., Stamper-Kurn, D.M.: Tunable cavity optomechanics with ultracold atoms. Phys. Rev. Lett. 105, 133602 (2010)

    Article  ADS  Google Scholar 

  • Rai, A., Agarwal, G.S.: Quantum optical spring. Phys. Rev. A 78, 013831 (2008)

    Article  ADS  Google Scholar 

  • Safavi-Naeini, A.H., Mayer Alegre, T.P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69 (2011)

    Article  ADS  Google Scholar 

  • Sankey, J.C., Yang, C., Zwickl, B.M., Jayich, A.M., Harris, J.G.E.: Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 6, 707 (2010)

    Article  Google Scholar 

  • Sarma, B., Sarma, A.K.: Controllable optical bistability in a hybrid optomechanical system. J. Opt. Soc. Am. B 33, 1335 (2016)

    Article  ADS  Google Scholar 

  • Shahidani, S., Naderi, M.H., Soltanolkotabi, M., Barzanjeh, S.: Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity. J. Opt. Soc. Am. B 31, 1087 (2014)

    Article  ADS  Google Scholar 

  • Shen, Z., Zhang, Y.L., Chen, Y., Zou, C.L., Xiao, Y.F., Zou, X.B., Sun, F.-W., Guo, G.-C., Dong, C.-H.: Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics 10, 657 (2016)

    Article  ADS  Google Scholar 

  • Sheng, J., Khadka, U., Xiao, M.: Realization of all-optical multistate switching in an atomic coherent medium. Phys. Rev. Lett. 109, 223906 (2012)

    Article  ADS  Google Scholar 

  • Singh, M.K., Jha, P.K., Bhattacherjee, A.B.: Photon blockade induced tunable source of one/two photon in a double quantum dot-semiconductor microcavity system. Optik 185, 685 (2019)

    Article  ADS  Google Scholar 

  • Singh, M.K., Jha, P.K., Bhattacherjee, A.B.: Optical switching and normal mode splitting in hybrid semiconductor microcavity containing quantum well and Kerr medium driven by amplitude-modulated field. J. Mod. Opt. 67, 692 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Stannigel, K., Rabl, P., Sorensen, A.S., Lukin, M.D., Zoller, P.: Optomechanical transducers for quantum-information processing. Phys. Rev. A 84, 042341 (2011)

    Article  ADS  Google Scholar 

  • Teufel, J.D., Donner, T., Li, D., et al.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359363 (2011)

    Article  Google Scholar 

  • Thompson, R.J., Rempe, G., Kimble, H.J.: Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132 (1992)

    Article  ADS  Google Scholar 

  • Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008)

    Article  ADS  Google Scholar 

  • Vanner, M.R.: Selective linear or quadratic optomechanical coupling via measurement. Phys. Rev. X 1, 021011 (2011)

    Google Scholar 

  • Vengalattore, M., Hafezi, M., Lukin, M.D., Prentiss, M.: Optical bistability at low light level due to collective atomic recoil. Phys. Rev. Lett. 101, 063901 (2008)

    Article  ADS  Google Scholar 

  • Vitali, D., Gigan, S., Ferreira, A., Bohm, H.R., Tombesi, P., Guerreio, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  • Vitali, D., Mancini, S., Ribichini, L., Tombesi, P.: Mirror quiescence and high-sensitivity position measurements with feedback. Phys. Rev. A 65, 063803 (2002)

    Article  ADS  Google Scholar 

  • Wang, C., Chen, H.-J., Zhu, K.-D.: Nonlinear optical response of cavity optomechanical system with second-order coupling. Appl. Opt. 54, 4623 (2015)

    Article  ADS  Google Scholar 

  • Wang, Y.D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)

    Article  ADS  Google Scholar 

  • Wang, H., Gu, X., Liu, Y.-X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90, 023817 (2014)

    Article  ADS  Google Scholar 

  • Weis, S., Riviere, R., Deleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  • Xiao, R.J., Pan, G.X., Zhou, L.: Analog multicolor electromagnetically induced transparency in multimode quadratic coupling quantum optomechanics. J. Opt. Soc. Am. B 32, 1399 (2015)

    Article  ADS  Google Scholar 

  • Xie, H., Liao, C.G., Shang, X., Ye, M.Y., Lin, X.M.: Phonon blockade in a quadratically coupled optomechanical system. Phys. Rev. A 96, 013861 (2017)

    Article  ADS  Google Scholar 

  • Xiong, H., Si, L.-G., Zheng, A.-S., Yang, X., Wu, Y.: Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A 86, 013815 (2012)

    Article  ADS  Google Scholar 

  • Xu, X.W., Shi, H.Q., Chen, A.X., Liu, Y.X.: Cross-correlation between photons and phonons in quadratically coupled optomechanical systems. Phys. Rev. A 98, 013821 (2018)

    Article  ADS  Google Scholar 

  • Xuereb, A., Paternostro, M.: Selectable linear or quadratic coupling in an optomechanical system. Phys. Rev. A 87, 023830 (2013)

    Article  ADS  Google Scholar 

  • Yan, D., Wang, Z.H., Ren, C.N., Gao, H., Li, Y., Wu, J.H.: Duality and bistability in an optomechanical cavity coupled to a Rydberg superatom. Phys. Rev. A 91, 023813 (2015)

    Article  ADS  Google Scholar 

  • Yin, T.S., Lü, X.Y., Wan, L.L., Bin, S.W., Wu, Y.: Enhanced photon-phonon cross-Kerr nonlinearity with two-photon driving. Opt. Lett. 43, 2050 (2018)

    Article  ADS  Google Scholar 

  • Zhang, J.-S., Li, M.-C., Chen, A.-X.: Enhancing quadratic optomechanical coupling via a nonlinear medium and lasers. Phys. Rev. A 99, 013843 (2019)

    Article  ADS  Google Scholar 

  • Zhang, J., Peng, K., Braunstein, S.L.: Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003)

    Article  ADS  Google Scholar 

  • Zhang, L., Song, Z.: Modification on static responses of a nano-oscillator by quadratic optomechanical couplings. Sci. China Phys. Mech. Astron. 57, 880–886 (2014)

    Article  ADS  Google Scholar 

  • Zhu, G.L., Lü, X.Y., Wan, L.L., Yin, T.S., Bin, Q., Wu, Y.: Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime. Phys. Rev. A 97, 033830 (2018)

    Article  ADS  Google Scholar 

  • karuza, M., Biancofiore, M., Natali, C., Tambesi, R., Di Giuseppe, G., Vitali, D.: Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment. J. Opt. 15, 025704 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

All the authors declare the following statements.

Funding

To prepare this manuscript, no funding was received by any of the authors.

Author information

Authors and Affiliations

Authors

Contributions

ABB conceived the theoretical model. MKS and SM performed the calculations and plotted the graphs. They analyzed and discussed the results with ABB. SM wrote the manuscript under the supervision of ABB.

Corresponding author

Correspondence to Sonam Mahajan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The authors of this manuscript do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In our present system, we found the stability conditions using Routh-Hurwitz Criterion (Gradshteyn and Ryzhik 1964) as,

$$\begin{aligned}&S_{1}=R_{0}>0, \end{aligned}$$
(37)
$$\begin{aligned}&S_{2}=(R_{3}R_{2}R_{1}-R_{4}R_{1}^2-R_{0}R_{3}^2)>0. \end{aligned}$$
(38)

Here,

$$\begin{aligned} R_{0}= & {} -2ia_{1}a_{2}\omega _{m}\Gamma _{1}-(\Delta _{1}+\delta _{1})a_{1}^{2}\omega _{m} \nonumber \\&-(\delta _{1}-\Delta _{1})a_{2}^2\omega _{m}+\omega _{t}\omega _{m}(\Delta _{1}^{2}-\delta _ {1}^{2}-\Gamma _{1}^2+\kappa ^2), \end{aligned}$$
(39)
$$\begin{aligned}&R_{1}=\gamma _{m}(\Delta _{1}^{2}-\delta _{1}^{2}-\Gamma _{1}^{2}+\kappa ^{2})+2\gamma _{m}\kappa , \end{aligned}$$
(40)
$$\begin{aligned}&R_{2}=\Delta _{1}^{2}-\delta _{1}^{2}-\Gamma _{1}^{2}+\kappa ^{2}+2\gamma _{m}\kappa , \end{aligned}$$
(41)
$$\begin{aligned}&R_{3}=2\Gamma _{1}+\gamma _{m}, \end{aligned}$$
(42)
$$\begin{aligned}&R_{4}=-1. \end{aligned}$$
(43)

Appendix B

$$\begin{aligned}&C_{1}(\omega )=\left( \kappa -i\omega \right) ^{2}-\Gamma _{1}^{2}+\Delta _{1}^{2}-\delta _{1}^{2}, \end{aligned}$$
(44)
$$\begin{aligned}&C_{2}(\omega )=\kappa +\Gamma _{1}-i\omega , \end{aligned}$$
(45)
$$\begin{aligned}&C_{3}(\omega )=a_{1}C_{2}(\omega )-ia_{2}(\delta _{1}-\Delta _{1}), \end{aligned}$$
(46)
$$\begin{aligned}&C_{4}(\omega )=\omega _{m}\left\{ -C_{3}(\omega )\left[ ia_{2}C_{2}(\omega )+(\Delta _{1}+\delta _{1})a_{1}\right] +\left[ ia_{2}a_{1}+\omega _{t}C_{2}(\omega )\right] C_{1}(\omega )\right\} \nonumber \\&-i\omega \left( \gamma _{m}-i\omega \right) C_{2}(\omega )C_{1}(\omega ). \end{aligned}$$
(47)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, S., Singh, M.K. & Bhattacherjee, A.B. Non-linear effects of quadratic coupling and Kerr medium in a hybrid optomechanical cavity system. Opt Quant Electron 54, 835 (2022). https://doi.org/10.1007/s11082-022-04260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04260-z

Keywords

Navigation