Skip to main content

Advertisement

Log in

Performance study and analysis of MIMO visible light communication-based V2V systems

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Vehicular Visible Light Communication (VLC) has recently attracted much interest from researchers and scientists. This technology enables the connectivity between the vehicles and the infrastructures along the road utilizing the Lighting-Emitting-Diodes based vehicle HeadLights (HLs) and TailLights (TLs) as wireless transmitters. This paper investigates the performance of a Vehicle-to-Vehicle VLC system using a Multiple-Input Multiple-Output (MIMO) scheme. Specifically, we establish the MIMO transmission system by using the two HLs of the source vehicle as wireless transmitters and multiple receivers (RXs) installed at the rear of the destination vehicle as wireless receivers. We consider different numbers of RXs, which result in various MIMO configurations, i.e., \(2\times 2\), \(2\times 3\), and \(2\times 4\). We conduct a channel modeling study based on the non-sequential ray-tracing capabilities of the OpticStudio software to obtain the optical channel gain, considering the possibility of both horizontal and vertical displacement between vehicles. We then explore the contribution of each RX in the total received power. In addition, we investigate the effect of weather conditions, modulation orders, and artificial light sources on the bit error rate (BER) performance of the considered MIMO configurations. The obtained results demonstrate that deploying the MIMO with higher orders can significantly enhance the system performance, particularly when there is a lateral shift between the two cars. It has been drawn from our results that the required SNR to achieve a BER of 10\(^{-4}\) reduces by 6 dB when \(2\times 4\) MIMO configuration is deployed compared to the \(2\times 2\) MIMO configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. In our work, we consider the gain of the collecting lens is unity as in (Eldeeb et al. 2019; Fuada et al. 2017).

References

  • Al-Nahhal, M., Basar, E., Uysal, M.: Flexible generalized spatial modulation for visible light communications. IEEE Trans. Veh. Technol. 70(1), 1041–1045 (2020)

    Article  Google Scholar 

  • Alam, M.R., Faruque, S.: Prospects of differential optical receiver with ambient light compensation in vehicular visible light communication. In: 2016 IEEE Veh. Netw. Conf. (VNC), IEEE, Columbus, OH, USA., pp 1–4 (2016)

  • Alsalami, F.M., Ahmad, Z., Haas, O., et al.: Regular-shaped geometry-based stochastic model for vehicle-to-vehicle visible light communication channel. In: 2019 Int. Jt. Conf. Electr. Eng. Inf. Technol. (JEEIT), IEEE, Amman, Jordan, pp 297–301 (2019)

  • Alsalami, F.M., Haas, O.C., Al-Kinani, A., et al.: Impact of dynamic traffic on vehicle-to-vehicle visible light communication systems. IEEE Syst. J. (2021)

  • Aly, B., Elamassie, M., Eldeeb, H.B., et al.: Experimental investigation of lens combinations on the performance of vehicular VLC. In: 2020 12th Int. Symp. Commun. Syst. Netw. Digit. Signal Process. (CSNDSP), Porto, Portugal, pp 1–5 (2020)

  • Amjad, M.S., Tebruegge, C., Memedi, A., et al.: Towards an IEEE 802.11 compliant system for outdoor vehicular visible light communications. IEEE Trans. Veh. Technol. 70(6), 5749–5761 (2021)

    Article  Google Scholar 

  • Ashraf, K., Islam, S.T., Hosseini, A.S., et al.: Motion characterization for vehicular visible light communications. In: 2019 11th Int. Conf. Commun. Syst. Netw. (COMSNETS), IEEE, Bengaluru, India, pp. 759–764 (2019)

  • Boyce, P.R.: Lighting for Driving: Roads, Vehicles, Signs, and Signals. CRC Press (2008)

  • Burton, A., Ghassemlooy, Z., Rajbhandari, S., et al.: Design and analysis of an angular-segmented full-mobility visible light communications receiver. Trans. Emerg. Telecommun. Technol. 25(6), 591–599 (2014)

    Article  Google Scholar 

  • Căilean, A.M., Dimian, M.: Current challenges for visible light communications usage in vehicle applications: a survey. IEEE Commun. Surv. Tutor. 19(4), 2681–2703 (2017)

    Article  Google Scholar 

  • Cervinka, D., Ahmad, Z., Salih, O., et al.: A study of yearly sunlight variance effect on vehicular visible light communication for emergency service vehicles. In: 2020 12th Int. Symp. Commun. Syst. Netw. Digit. Signal Process. (CSNDSP), IEEE, Porto, Portugal, pp. 1–6 (2020)

  • Chang, C.C., Su, Y.J., Kurokawa, U., et al.: Interference rejection using filter-based sensor array in vlc systems. IEEE Sens. J. 12(5), 1025–1032 (2011)

    Article  ADS  Google Scholar 

  • Chang, C.C., Su, Y.J., Kurokawa, U., et al.: Robust visible light communication links using filter-based sensor array. In: Wireless Sensing, Localization, and Processing VI, International Society for Optics and Photonics, p. 80610L (2011b)

  • Chang, C.C., Su, Y.J., Wu, C.T., et al.: A sensor array approach for robust wavelength division multiplexing in vlc systems. In: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1827–1830. IEEE, Singapore (2012)

  • Chang, C.C., Wu, C.T., Lee, K., et al.: Selected combining for efficient wdm-vlc system using filter-array receiver. In: 2014 9th IEEE Conference on Industrial Electronics and Applications, pp. 2195–2198. IEEE, Hangzhou, China (2014)

  • Cui, K., Chen, G., Xu, Z., et al.: Traffic light to vehicle visible light communication channel characterization. Appl. Opt. 51(27), 6594–6605 (2012)

    Article  ADS  Google Scholar 

  • Cui, Z., Wang, C., Tsai, H.M.: Characterizing channel fading in vehicular visible light communications with video data. In: 2014 IEEE Veh. Netw. Conf. (VNC), IEEE, Paderborn, Germany, pp 226–229 (2014)

  • Elamassie, M., Karbalayghareh, M., Miramirkhani, F., et al.: Effect of fog and rain on the performance of vehicular visible light communications. In: 2018 IEEE 87th Veh. Technol. Conf. (VTC Spring), IEEE, Porto, Portugal, pp. 1–6 (2018)

  • Eldeeb, H.B., Uysal, M.: Vehicle-to-vehicle visible light communication: How to select receiver locations for optimal performance? In: 2019 11th Int. Conf. Electr. Electron. Eng. (ELECO), IEEE, Bursa, Turkey, pp. 402–405 (2019)

  • Eldeeb, H.B., Uysal, M.: Visible light communication-based outdoor broadcasting. In: 2021 17th Int. Symp. Wireless Commun. Syst. (ISWCS), Berlin, Germany, pp. 1–6 (2021)

  • Eldeeb, H.B., Miramirkhani, F., Uysal, M.: A path loss model for vehicle-to-vehicle visible light communications. In: 2019 15th Int. Conf. Telecommun. (ConTEL), Graz, Austria, pp. 1–5 (2019)

  • Eldeeb, H.B., Mana, S.M., Jungnickel, V., et al.: Distributed MIMO for Li-Fi: channel measurements, ray tracing and throughput analysis. IEEE Photon Technol. Lett. 33(16), 916–919 (2021)

    Article  ADS  Google Scholar 

  • Eldeeb, H.B., Sait, S.M., Uysal, M.: Visible light communication for connected vehicles: How to achieve the omnidirectional coverage? IEEE Access 9, 103885–103905 (2021)

    Article  Google Scholar 

  • Eldeeb, H.B., Elamassie, M., Sait, S.M., et al.: Infrastructure-to-vehicle visible light communications: channel modelling and performance analysis. IEEE Trans. Veh. Technol. 71(3), 2240–2250 (2022). https://doi.org/10.1109/TVT.2022.3142991

    Article  Google Scholar 

  • Farahneh, H., Kamruzzaman, S.M., Fernando, X.: Differential receiver as a denoising scheme to improve the performance of V2V-VLC systems. In: 2018 Int. Conf. Commun. Workshops (ICC Workshops), IEEE, Kansas City, MO, USA, pp. 1–6 (2018)

  • Fuada, S., Putra, A.P., Adiono, T.: Analysis of received power characteristics of commercial photodiodes in indoor LoS channel visible light communication (2017)

  • Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical wireless communications: system and channel modelling with Matlab®. CRC Press (2019)

  • Gupta, V., Singhal, R.: Performance analysis of a visible light vehicle-to-vehicle wireless communication system. In: 2019 TEQIP III Spons. Int. Conf. Microw. Integr. Circuits Photonics Wirel. Netw. (IMICPW), IEEE, Tiruchirappalli, India, pp. 521–523 (2019)

  • Karbalayghareh, M., Miramirkhani, F., Eldeeb, H.B., et al.: Channel modelling and performance limits of vehicular visible light communication systems. IEEE Trans. Veh. Technol. 69(7), 6891–6901 (2020)

    Article  Google Scholar 

  • Khalid, A., Asif, H.M., Mumtaz, S., et al.: Design of MIMO-visible light communication transceiver using maximum rank distance codes. IEEE Access 7, 89128–89140 (2019)

    Article  Google Scholar 

  • Kim, Y.H., Cahyadi, W.A., Chung, Y.H.: Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions. IEEE Photon J. 7(6), 1–9 (2015)

    Article  Google Scholar 

  • Li, G., Niu, W., Ha, Y., et al.: Position-dependent MIMO demultiplexing strategy for high-speed visible light communication in internet-of-vehicles. IEEE Internet Things J (2021)

  • Liu, W., He, X.: Performance analysis of MIMO visible light based V2V communications. In: 2019 IEEE 89th Veh. Technol. Conf. (VTC2019-Spring), IEEE, Kuala Lumpur, Malaysia, pp. 1–4 (2019)

  • Luo, P., Ghassemlooy, Z., Le Minh, H., et al.: Fundamental analysis of a car to car visible light communication system. In: 2014 9th Int, pp. 1011–1016. Symp. Commun. Syst. Netw. Digit. Signal Process. CSNDSP, IEEE, Manchester, UK (2014)

  • Luo, P., Ghassemlooy, Z., Le Minh, H., et al.: Bit-error-rate performance of a car-to-car VLC system using 2\(\times\) 2 MIMO. Mediterr. J. Comput. Netw. 11, 400–407 (2015)

    Google Scholar 

  • Luo, P., Ghassemlooy, Z., Le Minh, H., et al.: Performance analysis of a car-to-car visible light communication system. Appl. Opt. 54(7), 1696–1706 (2015)

    Article  ADS  Google Scholar 

  • Memedi, A., Tsai, H.M., Dressler, F.: Impact of realistic light radiation pattern on vehicular visible light communication. In: GLOBECOM 2017–2017 IEEE Glob, pp. 1–6. Commun. Conf, IEEE, Singapore (2017)

  • Mmbaga, P.F., Thompson, J., Haas, H.: Performance analysis of indoor diffuse VLC MIMO channels using angular diversity detectors. J. Light Technol. 34(4), 1254–1266 (2015)

    Article  Google Scholar 

  • Morales-Céspedes, M., Quidan, A.A., Armada, A.G.: Experimental evaluation of the reconfigurable photodetector for blind interference alignment in visible light communications. In: 2019 27th Eur. Signal Process. Conf. (EUSIPCO), IEEE, A Coruna, Spain, pp. 1–5 (2019)

  • Nazari Chaleshtori, Z., Ghassemlooy, Z., Eldeeb, H.B., et al.: Utilization of an OLED-based VLC system in office, corridor, and semi-open corridor environments. Sensors 20(23), 6869 (2020)

    Article  ADS  Google Scholar 

  • Ramirez-Aguilera, A., Luna-Rivera, J., Guerra, V., et al.: A review of indoor channel modeling techniques for visible light communications. In: 2018 IEEE 10th IEEE Lat.-Am. Conf. Commun. (LATINCOM), Guadalajara, Mexico, pp. 1–6 (2018)

  • S13773 (2022) https://www.hamamatsu.com/eu/en/product/optical-sensors/distance-position-sensor/lidar-sensor/si-photodiode-for-lidar/S13773.html. Accessed 21 July 2022

  • Sarbazi, E., Uysal, M., Abdallah, M., et al.: Indoor channel modelling and characterization for visible light communications. In: 2014 16th Int. Conf. Transparent Opt. Netw. (ICTON), Graz, Austria, pp. 1–4 (2014)

  • Steendam, H., Wang, T.Q., Armstrong, J.: Cramer-rao bound for indoor visible light positioning using an aperture-based angular-diversity receiver. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE, Kuala Lumpur, Malaysia. (2016)

  • Turan, B., Ucar, S., Ergen, S.C., et al.: Dual channel visible light communications for enhanced vehicular connectivity. In: 2015 IEEE Veh, pp. 84–87. Netw. Conf. VNC, IEEE, Kyoto, Japan (2015)

  • Vadeby, A., Sörensen, G., Bolling, A., et al.: Towards a european guideline for speed management measures in work zones. Transp. Res. Proc. 14, 3426–3435 (2016)

    Google Scholar 

  • Vaezi, M., Ding, Z., Poor, H.V.: Multiple Access Techniques for 5G Wireless Networks and Beyond, vol. 159. Springer (2019)

  • Yahia, S., Meraihi, Y., Gabis, A.B., et al.: Multi-directional vehicle-to-vehicle visible light communication with angular diversity technology. In: 2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH), pp. 160–164. IEEE, Boumerdes, Algeria (2021)

  • Yahia, S., Meraihi, Y., Ramdane-Cherif, A., et al.: A survey of channel modeling techniques for visible light communications. J. Netw. Comput. Appl. 194(103), 206 (2021)

    Google Scholar 

  • Zang, J., Piao, Y.: Research on visible light communication system based on white leds. In: Selected Papers of the Chinese Society for Optical Engineering Conferences held October and November 2016, pp. 1155–1159. SPIE, China (2017)

  • Zhang, J., Wang, F.Y., Wang, K., et al.: Data-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 12(4), 1624–1639 (2011)

    Article  Google Scholar 

  • Zhang, Y., Cai, O., Yang, Y.: Research on the performance of 2\(\times\)2 MIMO vehicle visible light communication system. In: 2021 IEEE 4th Int. Conf. Electron. Commun. Eng. (ICECE), IEEE, Xián, China, pp. 244–251 (2021)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Yahia.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahia, S., Meraihi, Y., Refas, S. et al. Performance study and analysis of MIMO visible light communication-based V2V systems. Opt Quant Electron 54, 575 (2022). https://doi.org/10.1007/s11082-022-04015-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04015-w

Keywords

Navigation