Skip to main content
Log in

Performance analysis of NOMA system with imperfect SIC-based infrastructure-to-vehicle visible light communication

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The Non-Orthogonal Multiple Access (NOMA) scheme is a well-known technique used to improve the performance of Visible Light Communication (VLC) networks, specifically in the context of Vehicular VLC (V-VLC) for Infrastructure-to-Vehicle (I2V) communication. In this study we aim to assess the performance of NOMA systems integrated with the Infrastructure-to-Vehicle (I2V) VLC, considering the realistic scenario of imperfect Successive Interference Cancellation (SIC) for signal decoding. The study employs a comprehensive system model that incorporates multiple vehicles and a single infrastructure equipped with VLC transmitters and it incorporates realistic channel modeling for I2V communication. The NOMA scheme is implemented by using the power domain multiple access technique, where two vehicles are served concurrently by superposing their signals. Imperfect SIC is considered to account for the decoding errors occurring at the vehicles’ receivers due to residual interference. To evaluate the system’s performance, key performance metrics such as theoretical achievable capacity, bit error rate and fairness index are analyzed. The optimal power allocation coefficient that maximizes the total capacity and the fairness index is then obtained after formulating the optimization problem. Simulation results demonstrate that imperfect SIC has a noticeable impact on system performance, the total achievable data rate decreases by 5.7% when the fraction of the residue signal equals 0.05. This highlighting the necessity for efficient interference management techniques in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S.A.H. Mohsan, H. Amjad, A comprehensive survey on hybrid wireless networks: practical considerations, challenges, applications and research directions. Opt. Quant. Electron. 53(9), 1–56 (2021)

    Article  Google Scholar 

  2. K. Shaaban, M.H.M. Shamim, K. Abdur-Rouf, Visible light communication for intelligent transportation systems: a review of the latest technologies. J. Traffic Transp. Eng. 8(4), 483–492 (2021)

    Google Scholar 

  3. M.R. Shoaib, H.M. Emara, J. Zhao, A survey on the applications of frontier ai, foundation models, and large language models to intelligent transportation systems, in 2023 International Conference on Computer and Applications (ICCA), (IEEE, 2023), pp. 1–7

  4. H.B. Eldeeb, S.M. Sait, M. Uysal, Visible light communication for connected vehicles: How to achieve the omnidirectional coverage? IEEE Access 9, 103885–103905 (2021)

    Article  Google Scholar 

  5. M. Hasan, S. Mohan, T. Shimizu, H. Lu, Securing vehicle-to-everything (V2X) communication platforms. IEEE Trans. Intell. Veh. 5(4), 693–713 (2020)

    Article  Google Scholar 

  6. F. Miramirkhani, M. Uysal, Channel modelling for indoor visible light communications. Phil. Trans. R. Soc. A 378(2169), 20190187 (2020)

    Article  ADS  Google Scholar 

  7. A. Memedi, F. Dressler, Vehicular visible light communications: a survey. IEEE Commun. Surv. Tutor. 23(1), 161–181 (2020)

    Article  Google Scholar 

  8. M. Karbalayghareh et al., Channel modelling and performance limits of vehicular visible light communication systems. IEEE Trans. Veh. Technol. 69(7), 6891–6901 (2020)

    Article  Google Scholar 

  9. F.M. Alsalami, N. Aigoro, A.A. Mahmoud, Z. Ahmad, P.A. Haigh, O.C. Haas, S. Rajbhandari, Impact of vehicle headlights radiation pattern on dynamic vehicular vlc channel. J. Lightwave Technol. 39(10), 3162–3168 (2021)

    Article  ADS  Google Scholar 

  10. H.B. Eldeeb, M. Elamassie, M. Uysal, Performance analysis and optimization of cascaded I2V and V2V VLC links, in 2021 17th International Symposium on Wireless Communication Systems (ISWCS), (IEEE, 2021), pp. 1–6

  11. H.B. Eldeeb, M. Elamassie, S.M. Sait, M. Uysal, Infrastructure-to-vehicle visible light communications: channel modelling and performance analysis. IEEE Trans. Veh. Technol. 71(3), 2240–2250 (2022)

    Article  Google Scholar 

  12. A. Memedi, H.-M. Tsai, F. Dressler, Impact of realistic light radiation pattern on vehicular visible light communication, in GLOBECOM 2017-2017 IEEE Global Communications Conference, (IEEE, 2017). pp. 1–6

  13. M.S. Demir et al., Comp-based dynamic handover for vehicular vlc networks. IEEE Commun. Lett. 24(9), 2024–2028 (2020)

    Article  Google Scholar 

  14. A.M. Abdelhady, O. Amin, A. Chaaban, B. Shihada, M.-S. Alouini, Downlink resource allocation for dynamic TDMA-based VLC systems. IEEE Trans. Wireless Commun. 18(1), 108–120 (2018)

    Article  Google Scholar 

  15. M. Kashef, M. Abdallah, K. Qaraqe, Power allocation for downlink multi-user SC-FDMA visible light communication systems, in 2015 49th Annual Conference on Information Sciences and Systems (CISS), (IEEE, 2015), pp. 1–5

  16. Y. Qiu, S. Chen, H.-H. Chen, W. Meng, Visible light communications based on CDMA technology. IEEE Wirel. Commun. 25(2), 178–185 (2017)

    Article  Google Scholar 

  17. S. Mishra, R. Maheshwari, J. Grover, V. Vaishnavi, Investigating the performance of a vehicular communication system based on visible light communication (VLC). Int. J. Inform. Technol. 14, 877–885 (2022)

    Google Scholar 

  18. J. Lian, M. Brandt-Pearce, Multiuser visible light communication systems using OFDMA. J. Lightwave Technol. 38(21), 6015–6023 (2020)

    Article  ADS  Google Scholar 

  19. D. Wan, M. Wen, X. Cheng, S. Mumtaz, M. Guizani, A promising non-orthogonal multiple access based networking architecture: motivation, conception, and evolution. IEEE Wirel. Commun. 26(5), 152–159 (2019)

    Article  Google Scholar 

  20. M. Aldababsa, M. Toka, S. Gökçeli, G.K. Kurt, O. Kucur, A tutorial on nonorthogonal multiple access for 5G and beyond. Wirel. Commun. Mob. Comput. (2018). https://doi.org/10.1155/2018/9713450

    Article  Google Scholar 

  21. H. Shen, Y. Wu, W. Xu, C. Zhao, Optimal power allocation for downlink two-user non-orthogonal multiple access in visible light communication. J. Commun. Inform. Netw. 2(4), 57–64 (2017)

    Article  Google Scholar 

  22. V.S. Rajput, D. Ashok, A. Chockalingam, Joint noma transmission in indoor multi-cell VLC networks, in 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), (IEEE, 2019), pp. 1–6

  23. M.K. Aljohani, O.Z. Alsulami, K.D. Alazwary, M.O. Musa, T.E. El-Gorashi, M.T. Alresheedi, J.M. Elmirghani, NOMA visible light communication system with angle diversity receivers, in 2020 22nd International Conference on Transparent Optical Networks (ICTON), (IEEE, 2020), pp. 1–5

  24. H. Marshoud et al., Non-orthogonal multiple access for visible light communications. IEEE Photonics Technol. Lett. 28(1), 51–54 (2015)

    Article  ADS  Google Scholar 

  25. Z. Yang, W. Xu, Y. Li, Fair non-orthogonal multiple access for visible light communication downlinks. IEEE Wirel. Commun. Lett. 6(1), 66–69 (2016)

    Google Scholar 

  26. H.S. Ghanem, M.R. Shoaib, S. El-Gazar, H. Emara, W. El-Shafai, S.A. El-Moneim, A.S. El-Fishawy, T.E. Taha, H.F. Hamed, G.M. El-Banby et al., Automatic modulation classification with 2d transforms and convolutional neural network. Trans. Emerg. Telecommun. Technol. 33(12), 4623 (2022)

    Article  Google Scholar 

  27. M.R. Elshamy, B. Abozalam, A. Sayed, E. Nabil, Real-time control design and implementation of ball balancer system based on machine learning and machine vision. Concurr. Comput. Pract. Exp. 34(27), 7317 (2022)

    Article  Google Scholar 

  28. X. Zhang, Q. Gao, C. Gong, Z. Xu, User grouping and power allocation for NOMA visible light communication multi-cell networks. IEEE Commun. Lett. 21(4), 777–780 (2016)

    Article  Google Scholar 

  29. X. Liu, Z. Chen, Y. Wang, F. Zhou, Y. Luo, R.Q. Hu, BER analysis of NOMA-enabled visible light communication systems with different modulations. IEEE Trans. Veh. Technol. 68(11), 10807–10821 (2019)

    Article  Google Scholar 

  30. D.K. Patel, H. Shah, Z. Ding, Y.L. Guan, S. Sun, Y.C. Chang, J.M.-Y. Lim, Performance analysis of noma in vehicular communications over inid nakagami-m fading channels. IEEE Trans. Wireless Commun. 20(10), 6254–6268 (2021)

    Article  Google Scholar 

  31. G. Singh, A. Srivastava, V.A. Bohara, Z. Liu, Downlink performance of optical power domain NOMA for beyond 5G enabled V2X networks. IEEE Open J. Veh. Technol. 2, 235–248 (2021)

    Article  Google Scholar 

  32. N.A. Arafa, M.S. Arafa, S.M. Abd El-atty, F.E.A. El-Samie, H.B. Eldeeb, Capacity analysis of infrastructure-to-vehicle visible light communication with an optimized non-orthogonal multiple access scheme. Opt. Quant. Electron. 55(9), 840 (2023)

    Article  Google Scholar 

  33. Z. Nazari Chaleshtori et al., Utilization of an OLED-based VLC system in office, corridor, and semi-open corridor environments. Sensors 20(23), 6869 (2020)

    Article  ADS  Google Scholar 

  34. Z.N. Chaleshtori, et al., A flexible OLED VLC system for an office environment, in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (IEEE, 2020), pp. 1–5

  35. A.E.-R.A. El-Fikky, M.E. Eldin, H.A. Fayed, A. Abd El Aziz, H.M. Shalaby, M.H. Aly, Nlos underwater VLC system performance: static and dynamic channel modeling. Appl. Opt. 58(30), 8272–8281 (2019)

    Article  ADS  Google Scholar 

  36. M. Elamassie, F. Miramirkhani, M. Uysal, Performance characterization of underwater visible light communication. IEEE Trans. Commun. 67(1), 543–552 (2019)

    Article  Google Scholar 

  37. S. Yahia, Y. Meraihi, S. Refas, A.B. Gabis, A. Ramdane-Cherif, H.B. Eldeeb, Performance study and analysis of MIMO visible light communication-based V2V systems. Opt. Quant. Electron. 54(9), 1–22 (2022)

    Article  Google Scholar 

  38. B. Aly, et al. Experimental investigation of lens combinations on the performance of vehicular VLC, in2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (2020), pp. 1–5 . https://doi.org/10.1109/CSNDSP49049.2020.9249597

  39. J. Shi, J. He, K. Wu, J. Ma, Enhanced performance of asynchronous multi-cell vlc system using OQAM/OFDM-NOMA. J. Lightw. Technol. 37(20), 5212–5220 (2019)

    Article  ADS  Google Scholar 

  40. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, Non-orthogonal multiple access (NOMA) for cellular future radio access, in 2013 IEEE 77th vehicular technology conference (VTC Spring), (IEEE, 2013), pp. 1–5

  41. L. Yin, H. Haas, Physical-layer security in multiuser visible light communication networks. IEEE J. Sel. Areas Commun. 36(1), 162–174 (2017)

    Article  Google Scholar 

  42. H.B. Eldeeb, M. Hosney, H.M. Elsayed, R.I. Badr, M. Uysal, H.A. Selmy, Optimal resource allocation and interference management for multi-user uplink light communication systems with angular diversity technology. IEEE Access 8, 203224–203236 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The data related to the channel path loss model in Section 2.1 was presented previously in part at 2021 17th International Symposium on Wireless Communication Systems, ISWCS [10].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy A. Arafa.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arafa, N.A., Abd El-atty, S.M. & Arafa, M.S. Performance analysis of NOMA system with imperfect SIC-based infrastructure-to-vehicle visible light communication. J Opt (2024). https://doi.org/10.1007/s12596-024-01781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01781-6

Keywords

Navigation