Skip to main content
Log in

Electrocaloric effect in quantum dots using the non-extensive formalism

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, we consider a quantum dot in the presence of electric and magnetic fields simultaneously. The Schrodinger equation is analytically solved, and energy levels and eigenstates are determined. Then, we have calculated the changes in entropy using the non-extensive formalism. To this end, we have used the Tsallis entropy formalism to study the electrocaloric effect (ECE). Here, we have investigated the ECE of the system and determined the influence of system parameters on the ECE. Our attention of the work is to study the effect of temperature, electric field, magnetic field and, non-extensive parameter in the ECE. It is found that the aforementioned parameters have important roles on the ECE. We could obtain both normal and inverse the ECE by changing the parameters. This behavior can be employed for tuning the properties for particular applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atoyan, M.S., Kazaryan, E.M., Sarkisyan, H.A.: Interband light absorption in parabolic quantum dot in the presence of electrical and magnetic fields. Phys. E 31, 83–85 (2006)

    Article  Google Scholar 

  • Attar, F., Khordad, R., Zarifi, A.: Determination of vibration of single-layered graphene sheets using nonlocal modified couple stress theory. Int. J. Mod. Phys. C 33, 2250011–2250019 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  • Bhattacharyya, T., Cleymans, J., Mogliacci, S.: Analytic results for the Tsallis thermodynamic variables. Phys. Rev. D 94, 094026–094031 (2016)

    Article  ADS  Google Scholar 

  • Boyacioglu, B., Chatterjee, A.: Heat capacity and entropy of a GaAs quantum dot with Gaussian confinement. J. Appl. Phys. 112, 083514–083520 (2012)

    Article  ADS  Google Scholar 

  • Burkard, G., Loss, D., DiVincenzo, D.P.: Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2075 (1999)

    Article  ADS  Google Scholar 

  • Caruso, F., Tsallis, C.: Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics. Phys. Rev. E 78, 021102–021109 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Cortes, N., Negrete, O., Pena, F.J., Vargas, P.: Gate-tunable charge carrier electrocaloric effect in trilayer graphene. Sci. Reports 11, 22000–22010 (2021)

    ADS  Google Scholar 

  • Diffo, T.V., Fotue, A.J., Kenfack, S.C., Keumo Tsiaze, R.M., Baloitcha, E., Hounkonnou, M.N.: Thermodynamic properties of a monolayer transition metal dischalcogenide (TMD) quantum dot in the presence of magnetic field. Phys. Lett. A 385, 126958–126963 (2021)

    Article  MATH  Google Scholar 

  • Edet, C.O., Ikot, A.N.: Shannon information entropy in the presence of magnetic and Aharanov-Bohm (AB) fields. Eur. Phys. J. plus 136, 432–440 (2021)

    Article  Google Scholar 

  • Guo, K.X., Chen, C.Y., Das, T.P.: Studies on the third-harmonic generation of double-layered quantum wires in magnetic fields. Opt. Quant. Electron. 33, 231–237 (2001)

    Article  Google Scholar 

  • Hayrapetyan, D.B., Kazaryan, E.M., Kotanjyan, T.V., Tevosyan, H.K.: Exciton states and interband absorption of cylindrical quantum dot with Morse confining potential. Superlatt. Microstrut. 78, 40–49 (2015)

    Article  ADS  Google Scholar 

  • Hoffmann, M., Schroeder, U., Kunneth, C., Kersch, A., Starschich, S., Bottger, U., Mikolajick, T.: Ferroelectric phase transitions in nanoscale HfO2 films eneable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy 18, 154–164 (2015)

    Article  Google Scholar 

  • Jia, C.S., Li, J., Liu, Y.S., Peng, X.L., Jia, X., Zhang, L.H., Jiang, R., Li, X.P., Liu, J.Y., Zhao, Y.L.: Predictions of thermodynamic properties for hydrogen sulfide. J. Mol. Liq. 315, 113751–113756 (2020)

    Article  Google Scholar 

  • Khordad, R.: Effect of temperature on magnetic susceptibility and thermodynamic properties of an asymmetric quantum dot in tilted magnetic field. Mod. Phys. Lett. B 29, 1550127–1550132 (2015)

    Article  ADS  Google Scholar 

  • Khordad, R., Rastegar Sedehi, H.R.: Application of non-extensive entropy to study of decoherence of RbCl quantum dot qubit: Tsallis entropy. Superlatt. Microstruct. 101, 559–566 (2017)

    Article  ADS  Google Scholar 

  • Khordad, R., Rastegar Sedehi, H.R.: Low temperature behavior of thermodynamic properties of 1D quantum wire under the Rashba spin-orbit interaction and magnetic field. Solid State Commun. 269, 118–124 (2018)

    Article  ADS  Google Scholar 

  • Khordad, R., Rastegar Sedehi, H.R.: Thermodynamic properties of a double-ring shaped quantum dot at low and high temperatures. J. Low Temp. Phys. 190, 200–212 (2018)

    Article  ADS  Google Scholar 

  • Liang, D.C., Zeng, R., Wang, C.W., Ding, Q.C., Wei, L.S., Peng, X.L., Liu, J.Y., Yu, J., Jia, C.S.: Prediction of thermodynamic properties for sulfur dioxide. J. Mol. Liq. 352, 118722–118728 (2022)

    Article  Google Scholar 

  • Liu, Y., Peng, X.P., Lou, X., Zhou, H.: Intrinsic electrocaloric effect in ultrathin ferroelectric capacitors. Appl. Phys. Lett. 100, 192902–192908 (2012)

    Article  ADS  Google Scholar 

  • Liu, Y., Scott, J.F., Dkhil, B.: Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Appl. Phys. Rev. 3, 031102–031112 (2016)

    Article  ADS  Google Scholar 

  • Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–128 (1998)

    Article  ADS  Google Scholar 

  • Lu, S.G., Zhang, Q.: Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21, 1983–1987 (2009)

    Article  Google Scholar 

  • Mischenko, A.S., Zhang, Q., Scott, J.F., Whatmore, R.W., Mathur, N.D.: Giant electrocaloric effect in thin-film PbZr(0.95)Ti(0.05) O3. Science 311, 1270–1271 (2006)

    Article  ADS  Google Scholar 

  • Nammas, F.S.: Thermodynamic properties of two electrons quantum dot with harmonic interaction. Phys. A 508, 187–198 (2018)

    Article  MATH  Google Scholar 

  • Neese, B., Chu, B., Lu, G., Wang, Y., Furman, E., Zhang, Q.M.: Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821–823 (2008)

    Article  ADS  Google Scholar 

  • Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Hwang, C.S.: Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films. Nano Energy 12, 131–140 (2015)

    Article  Google Scholar 

  • Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Lee, Y.H., Hyun, S.D., Hwang, C.S.: Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films. Adv. Mater. 28, 7956–7961 (2016)

    Article  Google Scholar 

  • Park, M.H., Schenk, T., Hoffmann, M., Knebel, S., Gartner, J., Mikolajick, T., Schroeder, U.: Effect of acceptor doping on phase transitions of HfO2 thin films for energy-related applications. Nano Energy 36, 381–389 (2017)

    Article  Google Scholar 

  • Park, M.H., Hoffmann, M., Hwang, C.S.: Chapter 5.2 - Pyroelectric and electrocaloric effects and their applications. In: Schroeder, U., Hwang, C.S., Funakubo, H. (eds.) Woodhead Publishing Series in Electronic and Optical Materials, Ferroelectricity in doped hafnium oxide: materials, properties and devices, pp. 217–244. Woodhead Publishing (2019)

    Google Scholar 

  • Peng, X.L., Jiang, R., Jia, C.S., Zhang, L.H., Zhao, Y.L.: Gibbs free energy of gaseous phosphorus dimer. Chem. Eng. Sci. 190, 122–125 (2018)

    Article  Google Scholar 

  • Rastegar Sedehi, H.R.: Magnetocaloric effect in Rashba spin-orbit coupling and Zeeman splitting of a narrow nanowire quantum dot. Eur. Phys. J. Plus 136, 514 (2021)

    Article  Google Scholar 

  • Rastegar Sedehi, H.R.: Control of magnetocaloric effect in quantum dots using electric field at low temperatures. J. Low Temp. Phys. 207, 241–249 (2022)

    Article  ADS  Google Scholar 

  • Rastegar Sedehi, H.R., Khordad, R., Bahramiyan, H.: Optical properties and diamagnetic susceptibility of a hexagonal quantum dot: impurity effect. Opt. Quant. Electron. 53, 264–270 (2021)

    Article  Google Scholar 

  • Rastegar Sedehi, H.R., Arda, A., Sever, R.: Thermodynamic properties of a charged particle in non-uniform magnetic field. Opt. Quant. Electron. 53, 142–150 (2021)

    Article  Google Scholar 

  • Reis, M.S., Soriano, S.: Electrocaloric effect in graphenes. Appl. Phys. Lett. 102, 112903–112909 (2013)

    Article  ADS  Google Scholar 

  • Sirtori, C., Capasso, F., Sivco, D.L., Cho, A.Y.: Giant, triply resonant, third-order nonlinear susceptibility χ3ω(3) in coupled quantum wells. Phys. Rev. Lett. 68, 1010–1015 (1992)

    Article  ADS  Google Scholar 

  • Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tsallis, C., Mendes, R.S., Plastino, A.R.: The role of constraints within generalized nonextensive statistics. Phys. A 261, 534–554 (1998)

    Article  Google Scholar 

  • Wang, G.: Third-harmonic generation in cylindrical parabolic quantum wires with an applied electric field. Phys. Rev. B 72, 155329–155336 (2005)

    Article  ADS  Google Scholar 

  • Wang, J., Jia, C.S., Li, C.J., Peng, X.L., Zhang, L.H., Liu, J.Y.: Thermodynamic properties for carbon dioxide. ACS Omega 4, 19193–19198 (2019)

    Article  Google Scholar 

  • Wang, C.W., Wang, J., Liu, Y.S., Li, J., Peng, X.L., Jia, C.S., Zhang, L.H., Yi, L.Z., Liu, J.Y., Li, C.J., Jia, X.: Prediction of the ideal-gas thermodynamic properties for water. J. Mol. Liq. 321, 114912–114920 (2021)

    Article  Google Scholar 

  • Yahyah, N.S., Elsaid, M.K., Shaer, A.: Heat capacity and entropy of Gaussian spherical quantum dot in the presence of donor impurity. J. Theor. Appl. Phys. 13, 277–288 (2019)

    Article  ADS  Google Scholar 

  • Zhang, C.J., Guo, K.X.: Polaron effects on the third-order nonlinear optical susceptibility in asymmetrical semi-parabolic quantum wells. Phys. B 383, 183–187 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this part, we have presented the details of the calculation of energy levels. The Schrödinger equation is expressed by

$$ \frac{1}{{2m^{*} }}\left( {{\varvec{P}} - e{\varvec{A}}} \right)^{2} {\Psi } - eFz{\Psi } + V_{conf} \left( {\mathbf{r}} \right){\Psi } = E_{t} {\Psi } $$

Here,

$$ V\left( r \right) = \frac{1}{2}m^{*} \omega_{0}^{2} r^{2} = \frac{1}{2}m^{*} \omega_{0}^{2} \left( {\rho^{2} + z^{2} } \right) $$

In the cylindrical coordinates, we have

$$ - \frac{{\hbar^{2} }}{{2m^{*} }}\left[ {\frac{1}{{\uprho }}\frac{\partial }{{\partial {\uprho }}}\left( {{\uprho }\frac{\partial }{{\partial {\uprho }}}{ }} \right) + \frac{{\partial^{2} }}{{\partial z^{2} }} + \frac{1}{{{\uprho }^{2} }}\frac{{\partial^{2} }}{{\partial \varphi^{2} }}} \right]{\Psi } - \frac{{i\hbar \omega_{c} }}{2}\frac{{\partial {\Psi }}}{\partial \varphi } + \frac{{m^{*} {\Omega }^{2} {\uprho }^{2} }}{8}{\Psi } - e \in z{\Psi } + \frac{{m^{*} \omega_{0}^{2} {\text{z}}^{2} }}{2} {\Psi } = E_{t} {\Psi } $$

where \(E_{t} = E_{\rho } + E_{z}\).

Consider the wave function as

$$ {\Psi }\left( {\rho ,\varphi ,z} \right) = f\left( {\rho ,\varphi } \right)g\left( z \right) $$

By using above relation, we have

$$ - \frac{{\hbar^{2} }}{{2m^{*} }}\left[ {\frac{1}{{\uprho }}\frac{\partial }{{\partial {\uprho }}}\left( {{\uprho }\frac{\partial }{{\partial {\uprho }}}{ }} \right) + \frac{1}{{{\uprho }^{2} }}\frac{{\partial^{2} }}{{\partial \varphi^{2} }}} \right]f - \frac{{i\hbar \omega_{c} }}{2}\frac{\partial f}{{\partial \varphi }} + \frac{{m^{*} {\Omega }^{2} {\uprho }^{2} }}{8}f = E_{\rho } f $$
$$ - \frac{{\hbar^{2} }}{{2m^{*} }}\frac{{d^{2} g}}{{dz^{2} }} + \frac{{m^{*} \omega_{0}^{2} {\text{z}}^{2} }}{2}g - e \in zg = E_{z} g $$

The solutions of the above equations are (Atoyan et al. 2006)

$$ f\left( {\rho ,\varphi } \right) = Ae^{im\varphi } e^{{ - \frac{{\rho^{2} }}{{4a^{2} }}}} \rho^{\left| m \right|} F\left( { - n_{\rho } ,\left| m \right| + 1;\frac{{\rho^{2} }}{{2a^{2} }}} \right) $$
$$ g\left( z \right) = Be^{{ - \frac{{m^{*} \omega_{0} }}{\hbar }\left( {z - z_{0} } \right)^{2} }} H_{{n_{z} }} \left[ {\sqrt {\frac{{m^{*} \omega_{0} }}{\hbar }} \left( {z - z_{0} } \right)} \right] $$

where \(A\) and \(B\) are the normalization constants, \(a = \sqrt {\frac{\hbar }{{m^{*} {\Omega }}}}\), \(z_{0} = \frac{e \in }{{m^{*} \omega_{0}^{2} }}\), \(F\left( {\mu ,\lambda ;x} \right)\) is the confluent hypergeometric function, and \(H_{n} \left( x \right)\) is the Hermite function. Also, \(n_{\rho }\), \(m\), and \(n_{z}\) are the quantum numbers, respectively.

Using the above wave function, the total energy is obtained as

$$ E_{{n_{\rho } ,m,n_{z} }} = \left( {n_{\rho } + \frac{\left| m \right| + 1}{2}{ }} \right)\hbar {\Omega } + \frac{{m\hbar \omega_{c} }}{2} + \left( {n_{z} + \frac{1}{2}{ }} \right)\hbar \omega_{0} - \frac{{e^{2} \in^{2} }}{{2m^{*} \omega_{0}^{2} }} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khordad, R., Sedehi, H.R.R. Electrocaloric effect in quantum dots using the non-extensive formalism. Opt Quant Electron 54, 511 (2022). https://doi.org/10.1007/s11082-022-03902-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03902-6

Keywords

Navigation