Skip to main content
Log in

On some optical soliton structures to the Lakshmanan-Porsezian-Daniel model with a set of nonlinearities

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, the Lakshmanan-Porsezian-Daniel model is investigated which is the generalization of the non-linear Schrödinger model, to describes the dynamical behavior of optical solitons. The extended modified auxiliary equation mapping method is employed to develop some new exact solitary wave solutions to the complex model with the ker law, the parabolic law and the anti-cubic law nonlinearities. As a result, dark solitons, light solitons, singular solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions are established. In the current era of communications network technology and nonlinear optics, the applied strategy appears to be a more powerful and efficient approach for achieving exact optical solutions to a number of diversified contemporary models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ahmad, I., Hijaz, A., Inc, M., Hadi, R., Ali Akbar, M., Mostafa, M.A.K., Lanre, A., Adil, J.: Solution of fractional-order Korteweg-de Vries and Burgers’ equations utilizing local meshless method. J. Ocean Eng. Sci. (2021)

  • Ahmed, I., Seadawy, A.R., Lu, D.: M-shaped rational solitons and their interaction with kink waves in the fokas-lenells equation. Phys. Scr. 94(5), 055205 (2019)

    Article  ADS  Google Scholar 

  • Akinyemi, L., Senol, M., Iyiola, O.S.: Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 182, 211–233 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Akram, G., Sadaf, M., Arshed, S., Sameen, F.: Bright, dark, kink, singular and periodic soliton solutions of Lakshmanan-Porsezian-Daniel model by generalized projective Riccati equations method. Optik 241, 167051 (2021)

    Article  ADS  Google Scholar 

  • Akram, G., Sarfraz, M.: Multiple optical soliton solutions for cgl equation with kerr law nonlinearity via extended modified auxiliary equation mapping method. Optik 242, 167258 (2021)

    Article  ADS  Google Scholar 

  • Al-Munawarah, A.-M., Arabia, S.: Optical soliton perturbation with fractional temporal evolution by extended modified auxiliary equation mapping. Rev. Mex. Fis. 67(3), 403–414 (2021)

    Google Scholar 

  • Ali, K.K., Gómez-Aguilar, J.F.: New solitary wave solutions of the space-time fractional coupled equal width wave equation (CEWE) and coupled modified equal width wave equation (CMEWE). Int. J. Appl. Computat. Math. 7(4), 1–19 (2021)

    MathSciNet  MATH  Google Scholar 

  • Alzahrani, A.K., Belic, M.R.: Cubic-quartic optical soliton perturbation with Lakshmanan-Porsezian-Daniel model by semi-inverse variational principle. Ukr. J. Phys. Opt. 22(123) (2021)

  • Asimakopoulos, G., Whalley, J.: Market leadership, technological progress and relative performance in the mobile telecommunications industry. Technol. Forecast. Soc. Change 123, 57–67 (2017)

    Article  Google Scholar 

  • Bandelow, U., Amiranashvili, S., Pickartz, S.: Stabilization of optical pulse transmission by exploiting fiber nonlinearities. J. Light. Technol. 38(20), 5743–5747 (2020)

    Article  ADS  Google Scholar 

  • Biswas, A., Ekici, M., Sonmezoglu, A., Belic, M.R.: Solitons in optical fiber bragg gratings with dispersive reflectivity by extended trial function method. Optik 182, 88–94 (2019)

    Article  ADS  Google Scholar 

  • Biswas, A., Ekici, M., Sonmezoglu, A., Triki, H., Majid, F.B., Zhou, Q., Moshokoa, S.P., Mirzazadeh, M., Belic, M.: Optical solitons with Lakshmanan-Porsezian-Daniel model using a couple of integration schemes. Optik 158, 705–711 (2018)

    Article  ADS  Google Scholar 

  • Biswas, A., Yildirim, Y., Yasar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons for Lakshmanan-Porsezian-Daniel model by modified simple equation method. Optik 160, 24–32 (2018)

    Article  ADS  Google Scholar 

  • Buck, J.A.: Fundamentals of Optical Fibers. Wiley, New Jersey (2004)

    Google Scholar 

  • Bulbul, A.A., Jibon, R.H., Das, S.K., Roy, T., Saha, A., Hossain, M.B.: Pcf based formalin detection by exploring the optical properties in thz regime. Nanosci. Nanotechnol.-Asia 11(3), 314–321 (2021)

    Article  Google Scholar 

  • Chen, S., Lü, X., Li, M.-G., Wang, F.: Derivation and simulation of the M-lump solutions to two (2+ 1)-dimensional nonlinear equations. Phys. Scr. 96(9), 095201 (2021)

    Article  ADS  Google Scholar 

  • Chen, S.-J., Lü, X., Tang, X.F.: Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 95, 105628 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Cui, T.J., Smith, D.R., Liu, R.: Metamaterials. Springer, New York (2010)

    Book  Google Scholar 

  • Ekici, M., Sonmezoglu, A.: Optical solitons with biswas-arshed equation by extended trial function method. Optik 177, 13–20 (2019)

    Article  ADS  Google Scholar 

  • El-Labany, S., El-Taibany, W., Behery, E., Fouda, S.: Collision of dust ion acoustic multisolitons in a non-extensive plasma using hirota bilinear method. Phys. Plasmas 25(1), 013701 (2018)

    Article  ADS  Google Scholar 

  • Hosseini, K., Mayeli, P., Kumar, D.: New exact solutions of the coupled sine-gordon equations in nonlinear optics using the modified kudryashov method. J. Mod. Opt. 65(3), 361–364 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Hubert, M.B., Gambo, B., Mibaile, J., Serge, Y.D., Kofane, T.C., Anjan, B., Qin, Z., et al.: Optical solitons with Lakshmanan-Porsezian-Daniel model by modified extended direct algebraic method. Optik 162, 228–236 (2018)

    Article  ADS  Google Scholar 

  • Inegbedion, H., Obadiaru, E.: Modelling brand loyalty in the nigerian telecommunications industry. J. Strateg. Mark. 27(7), 583–598 (2019)

    Article  Google Scholar 

  • Islam, T., Gómez-Aguilar, J.F., Ali, A., Fernández-Anaya, G.: Diverse soliton structures for fractional nonlinear Schrodinger equation, KdV equation and WBBM equation adopting a new technique. Opt. Quantum Electron. 53(12), 1–27 (2021)

    Google Scholar 

  • Islam, M.T., Md Ali, A., Gómez-Aguilar, J.F., Bonyah, E., Fernandez-Anaya, G.: Assorted soliton structures of solutions for fractional nonlinear Schrodinger types evolution equations. J. Ocean Eng. Sci. (2021)

  • Ivezić, Ž, Kahn, S.M., Tyson, J.A., Abel, B., Acosta, E., Allsman, R., Alonso, D., AlSayyad, Y., Anderson, S.F., Andrew, J., et al.: Lsst: from science drivers to reference design and anticipated data products. Astrophys. J. 873(2), 111 (2019)

    Article  ADS  Google Scholar 

  • Jin-Ming, Z., Yao-Ming, Z.: The hirota bilinear method for the coupled burgers equation and the high-order boussinesq-burgers equation. Chin. Phys. B 20(1), 010205 (2011)

    Article  Google Scholar 

  • Kamenkovich, V.M.: Fundamental of Ocean Dynamics. Elsevier, Amsterdam (2011)

    Google Scholar 

  • Khater, M., Adil, J., Hadi, R., Lanre, A., Ali Akbar, M., Inc, M., Hijaz, A.: New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Opt. Quantum Electron. 53(11), 1–27 (2021)

    Article  Google Scholar 

  • Khater, M.M., Anwar, S., Tariq, K.U., Mohamed, M.S.: Some optical soliton solutions to the perturbed nonlinear schrödinger equation by modified khater method. AIP Adv. 11(2), 025130 (2021)

    Article  ADS  Google Scholar 

  • Khater, M., Attia, R.A., Lu, D.: Modified auxiliary equation method versus three nonlinear fractional biological models in present explicit wave solutions. Math. Comput. Appl. 24(1), 1 (2019b)

    MathSciNet  Google Scholar 

  • Khater, M.M., Lu, D., Attia, R.A.: Dispersive long wave of nonlinear fractional wu-zhang system via a modified auxiliary equation method. AIP Adv. 9(2), 025003 (2019a)

    Article  ADS  Google Scholar 

  • Khodadad, F.S., Mirhosseini-Alizamini, S.M., Günay, B., Akinyemi, L., Inc, M., Rezazadeh, H.: Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation. Opt. Quantum Electron. 53(12), 1–17 (2021)

    Article  Google Scholar 

  • Kudryashov, N.A.: The painlevé approach for finding solitary wave solutions of nonlinear nonintegrable differential equations. Optik 183, 642–649 (2019)

    Article  ADS  Google Scholar 

  • Kumar, D., Seadawy, A.R., Joardar, A.K.: Modified kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 56(1), 75–85 (2018)

    Article  Google Scholar 

  • Li, L.-X., Li, E.-Q., Wang, M.-L.: The (g’/g, 1/g)-expansion method and its application to travelling wave solutions of the zakharov equations. Appl. Math. J. Chin. Univ. 25(4), 454–462 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, W., Schmitt, D.R., Zou, C., Chen, X.: A program to calculate pulse transmission responses through transversely isotropic media. Comput. Geosci. 114, 59–72 (2018)

    Article  ADS  Google Scholar 

  • Lindo, Z.: Transoceanic dispersal of terrestrial species by debris rafting. Ecography 43(9), 1364–1372 (2020)

    Article  Google Scholar 

  • Liu, W., Zhang, Y., Triki, H., Mirzazadeh, M., Ekici, M., Zhou, Q., Biswas, A., Belic, M.: Interaction properties of solitonics in inhomogeneous optical fibers. Nonlinear Dyn. 95(1), 557–563 (2019)

    Article  Google Scholar 

  • Lu, D., Seadawy, A., Arshad, M.: Applications of extended simple equation method on unstable nonlinear schrödinger equations. Optik 140, 136–144 (2017)

    Article  ADS  Google Scholar 

  • Lü, X., Chen, S.-J.: New general interaction solutions to the KPI equation via an optional decoupling condition approach. Commun. Nonlinear Sci. Numer. Simul. 103, 105939 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Lü, X., Chen, S.-J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103(1), 947–977 (2021)

    Article  Google Scholar 

  • Lü, X., Hua, Y.-F., Chen, S.-J., Tang, X.-F.: Integrability characteristics of a novel (2+ 1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws. Commun. Nonlinear Sci. Numer. Simul. 95, 105612 (2021a)

    Article  MATH  Google Scholar 

  • Lü, X., Hui, H.-W., Liu, F.-F., Bai, Y.-L.: Stability and optimal control strategies for a novel epidemic model of COVID-19. Nonlinear Dyn. 106(2), 1491–1507 (2021b)

    Article  Google Scholar 

  • Ma, Q., Cui, T.J.: Information metamaterials: bridging the physical world and digital world. PhotoniX 1(1), 1–32 (2020)

    Article  MathSciNet  Google Scholar 

  • Mahak, N., Akram, G.: Exact solitary wave solutions by extended rational sine-cosine and extended rational sinh-cosh techniques. Phys. Scr. 94(11), 115212 (2019)

    Article  ADS  Google Scholar 

  • Mahak, N., Akram, G.: The modified auxiliary equation method to investigate solutions of the perturbed nonlinear schrödinger equation with kerr law nonlinearity. Optik 207, 164467 (2020)

    Article  ADS  Google Scholar 

  • Naher, H., Abdullah, F.A.: The modified benjamin-bona-mahony equation via the extended generalized riccati equation mapping method. Appl. Math. Sci. 6(111), 5495–5512 (2012)

    MathSciNet  MATH  Google Scholar 

  • Nawaz, B., Rizvi, S.T.R., Ali, K., Younis, M.: Optical soliton for perturbed nonlinear fractional schrödinger equation by extended trial function method. Opt. Quantum Electron. 50(5), 1–14 (2018)

    Article  Google Scholar 

  • Olbers, D., Willebrand, J., Eden, C.: Ocean Dynamics. Springer, New York (2012)

    Book  MATH  Google Scholar 

  • Rezazadeh, H., Korkmaz, A., Khater, M.M., Eslami, M., Lu, D., Attia, R.A.: New exact traveling wave solutions of biological population model via the extended rational sinh-cosh method and the modified khater method. Mod. Phys. Lett. B 33(28), 1950338 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Rezazadeh, H., Mirzazadeh, M., Mirhosseini-Alizamini, S.M., Neirameh, A., Eslami, M., Zhou, Q.: Optical solitons of lakshmanan-porsezian-daniel model with a couple of nonlinearities. Optik 164, 414–423 (2018)

    Article  ADS  Google Scholar 

  • Seadawy, A.R., Cheemaa, N.: Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear schrödinger equation in nonlinear optics. Mod. Phys. Lett. B 33(18), 1950203 (2019)

    Article  ADS  Google Scholar 

  • Sun, Y.-L., Ma, W.-X., Yu, J.-P.: N-soliton solutions and dynamic property analysis of a generalized three-component hirota-satsuma coupled kdv equation. Applied . Lett. 120, 107224 (2021)

    MathSciNet  MATH  Google Scholar 

  • Wang, Q., Kong, L., Dang, Y., Xia, F., Zhang, Y., Zhao, Y., Hu, H., Li, J.: High sensitivity refractive index sensor based on splicing points tapered smf-pcf-smf structure mach-zehnder mode interferometer. Sens. Actuators B Chem. 225, 213–220 (2016)

    Article  Google Scholar 

  • Wang, Y., Rehren, T., Tan, Y., Cong, D., Jia, P.W., Henderson, J., Ma, H., Betts, A., Chen, K.: New evidence for the transcontinental spread of early faience. J. Archaeol. Sci. 116, 105093 (2020)

    Article  Google Scholar 

  • Wazwaz, A.-M.: A sine-cosine method for handlingnonlinear wave equations. Math. Comput. Model. 40(5–6), 499–508 (2004)

    Article  MATH  Google Scholar 

  • Wazwaz, A.-M.: Gaussian solitary waves for the logarithmic-kdv and the logarithmic-kp equations. Phys. Scr. 89(9), 095206 (2014)

    Article  ADS  Google Scholar 

  • Weckbrodt, J., Ginot,N., Batard, C., Azzopardi, S.: Short pulse transmission for sic communicating gate driver under high dv/dt. In: PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, VDE, pp. 1–6. (2018)

  • Yildirim, Y., Topkara, E., Biswas, A., Triki, H., Ekici, M., Guggilla, P., Khan, S., Belic, M.R.: Cubic-quartic optical soliton perturbation with Lakshmanan-Porsezian-Daniel model by sine-Gordon equation approach. J. Opt. 50(2), 322–329 (2021)

    Article  Google Scholar 

  • Yin, Y.-H., Xing, L., Si-Jia, C.: Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations. Chin. Phys. B 29(12), 120502 (2020)

    Article  ADS  Google Scholar 

  • Yong, C., Biao, L., Hong-Qing, Z.: Generalized riccati equation expansion method and its application to the bogoyavlenskii’s generalized breaking soliton equation. Chin. Phys. 12(9), 940 (2003)

    Article  Google Scholar 

  • Yépez-Martínez, H., Inc, M., Hadi, R., Mehmet, A.A., Gómez-Aguilar, J.F.: Analytical solutions to the fractional Lakshmanan-Porsezian-Daniel model. Opt. Quantum Electr. 54(1), 1–41 (2022)

    Article  Google Scholar 

  • Yépez-Martínez, H., Rezazadeh, H., Inc, M., Gómez-Aguilar, J.F.: A new local fractional derivative applied to the analytical solutions for the nonlinear Schrödinger equation with third-order dispersion. J. Nonlinear Opt. Phys. Mater. 31, 2250011 (2022)

    Article  ADS  Google Scholar 

  • Zafar, A., Shakeel, M., Ali, A., Akinyemi, L., Rezazadeh, H.: Optical solitons of nonlinear complex Ginzburg-Landau equation via two modified expansion schemes. Opt. Quantum Electron. 54(1), 1–15 (2022)

    Article  Google Scholar 

  • Zayed, E.M., Shohib, R.M.: Optical solitons and other solutions to biswas-arshed equation using the extended simplest equation method. Optik 185, 626–635 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalim U. Tariq.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, K.U., Wazwaz, AM. & Ahmed, A. On some optical soliton structures to the Lakshmanan-Porsezian-Daniel model with a set of nonlinearities. Opt Quant Electron 54, 432 (2022). https://doi.org/10.1007/s11082-022-03830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03830-5

Keywords

Navigation