Skip to main content
Log in

Polarization modal analysis of Tamm plasmon at the metal-DBR interface for temperature sensing

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present a comprehensive analysis for Transverse Electric (TE) and Transverse Magnetic (TM) polarized guided optical Tamm-plasmon (OTP) mode at metal–distributed Bragg reflector interface for temperature sensing device applications. The performance of both the polarized light has been investigated in terms of sensing parameters and corresponding sensitivity variation for a wide temperature tuning in a Ta2O5/SiO2 bilayer system on the plasmonic material of Ag for different angle of incidence (AOI). The guided OTP-modes (TE and TM) exhibit different interesting sensing characteristics which can be tailored/extended as per the desired application. The variation of the sensing parameters changes gradually for TE polarization whereas TM polarization presents different characteristics compared to their TE counterpart for a variation of the AOI. It has been observed that TE mode presents gradual decreasing of ΔR for an increment of AOI while TM polarization presents a decreasing followed by an increasing variation. Though resonance wavelength (λres) variations of both the polarization remain the same, the most contrasting variation could be observed for the detection accuracy (DA) variation. The value of DA decreases for TM mode for an increment of AOI, while a complete opposite variation could be observed for the TE polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Askari, M.: A near infrared plasmonic perfect absorber as a sensor for hemoglobin concentration detection. Opt. Quant. Electron. 53, 67 (2021)

    Article  Google Scholar 

  • Askari, M., Hosseini, M.V.: Infrared metamaterial refractive-index-based sensor. J. Opt. Soc. Am. B 37, 2712–2718 (2020)

    Article  ADS  Google Scholar 

  • Askari, M., Pakarzadeh, H., Shokrgozar, F.: High Q-factor terahertz metamaterial for superior refractive index sensing. J. Opt. Soc. Am. B 38, 3929–3936 (2021)

    Article  ADS  Google Scholar 

  • Auguie, B., Fuertes, M.C., Angelomé, P.C., Abdala, N.L., Soler Illia, G.J.A.A., Fainstein, A.: Tamm plasmon resonance in mesoporous multilayers: toward asensing application. ACS Photon. 1, 775–780 (2014)

    Article  Google Scholar 

  • Beach, R.T., Christy, R.W.: Electron-electron scattering in the intraband optical conductivity of Cu, Ag and Au. Phys. Rev. B 16, 5277–5284 (1977)

    Article  ADS  Google Scholar 

  • Berini, P.: Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys. Rev. B. 61, 10484 (2000)

    Article  ADS  Google Scholar 

  • Bright, T.J., Watjen, J.I., Zhang, Z.M., Muratore, C., Voevodin, A.A., Koukis, D.I., Tanner, D.B., Arenas, D.J.: Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films. J. Appl. Phys. 114, 083515 (2013)

    Article  ADS  Google Scholar 

  • Bruckner, R., Sudzius, M., Hintschich, S.I., Frob, H., Lyssenko, V.G., Kalitteevski, M.A., Iorsh, I., Abram, R.A., Kavokin, V., Leo, L.: Parabolic polarization splitting of Tamm states in a metal-organic microcavity. Appl. Phys. Lett. 100, 62101 (2012)

    Article  Google Scholar 

  • Chiang, H.-P., Leung, P.T., Tse, W.S.: Optical properties of composite materials at high temperatures. Solid State Commun. 101, 45–50 (1997)

    Article  ADS  Google Scholar 

  • Chiang, H.P., Leung, P.T., Tse, W.S.: The surface plasmon enhancement effect on absorbed molecules at elevated temperatures. J. Chem. Phys. 108, 2659 (1998)

    Article  ADS  Google Scholar 

  • Chiang, H.P., Wang, Y.C., Leung, P.T., Tse, W.S.: A theoretical model for the temperature-dependent sensitivity of the optical sensor based onsurface-plasmon resonance. Opt. Commun. 188, 283–289 (2001)

    Article  ADS  Google Scholar 

  • Chu, A., Lin, H., Cheng, W.: Temperature dependence of refractive index of Ta2O5 dielectric films. J. Electron. Mater. 26, 889–892 (1997)

    Article  ADS  Google Scholar 

  • Das, R., Pandey, A., Srivastava, T., Jha, R.: Guided-mode analysis of Tamm-plasmon polariton at metal-heterostructure dielectric interface. J. Lightw. Technol. 32, 1221–1227 (2014)

    Article  ADS  Google Scholar 

  • Ghatak, A.K., Thayagarajan, K., Shenoy, M.R.: Numerical analysis of planar waveguide using matrix method. J. Lightw. Technol. 5, 660–667 (1987)

    Article  ADS  Google Scholar 

  • Ghatak, A. K., Thayagarajan, K.: Introduction to fiber optics. Cambridge (2005)

  • Ghosh, G., Endo, M., Iwasaki, T.: Temperature dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses. J. Lightw. Technol. 12, 1338 (1994)

    Article  ADS  Google Scholar 

  • Gong, Y.K., Liu, X.M., Lu, H., Wang, L.R., Wang, G.X.: Perfect absorber supported by optical Tamm states in plasmonic waveguide. Opt. Express 19(19), 18393–18398 (2011)

    Article  ADS  Google Scholar 

  • Holstein, T.: Optical and infrared volume absorptivity of metals. Phys. Rev. 96, 535–536 (1954)

    Article  ADS  Google Scholar 

  • Homola, J., Yee, S.S., Gauglitz, G.: Surface Plasmon resonance sensors: Review. Sens. Actuators B 54, 3–15 (1999)

    Article  Google Scholar 

  • http://www.schott.com/shop/advanced-optics/en/Optical-Glass/N-BK7/c/glass-N-BK7

  • Islam, M.R., Iftekher, A.N.M., Hasan, K.R.: Design and analysis of a biochemical sensor based on surface plasmon resonance with ultra-high sensitivity. Plasmonics 16, 849–861 (2021)

    Article  Google Scholar 

  • Islam, M.S., Sultana, J., Aoni, R.A., Habib, M., Dinovitser, A., Ng, B.W.-H., Abbott, D.: Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification. Opt. Lett. 44, 1134–1137 (2019)

    Article  ADS  Google Scholar 

  • Kavokin, A.V., Shelykh, I.A., Malpuech, G.: Lossless interface modes at the boundary between two periodic dielectric structures. Phys. Rev. B 72(23), 233102 (2005)

    Article  ADS  Google Scholar 

  • Kretschmann, E., Raether, H.: Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch. 23A, 2135–2136 (1968)

    Article  ADS  Google Scholar 

  • Kumar, S., Maji, P.S., Das, R.: Tamm-plasmon resonance based temperature sensor in a Ta2O5/SiO2 based distributed Bragg reflector. Sens. Actuators A 260, 10–15 (2017a)

    Article  Google Scholar 

  • Kumar, S., Shukla, M.K., Maji, P.S., Das, R.: Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in sub-wavelength analyte layers. J. Phys. D Appl. Phys. 50, 375106 (2017b)

    Article  Google Scholar 

  • Lawrence, W.E.: Electron–electron scattering in the low temperature resistivity of the noble metals. Phys. Rev. B 13, 5316 (1976)

    Article  ADS  Google Scholar 

  • Lee, K.J., Wu, J.W., Kim, K.: Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures. Opt. Express 21(23), 28817–28823 (2013)

    Article  ADS  Google Scholar 

  • Lin, K.Q., Wei, L.M., Zhang, D.G., Zheng, R.S., Wang, P., Lu, Y.-H., Ming, H.: Temperature effects on prism-based surface plasmon resonance sensor. Chin. Phys. Lett. 24, 3081–3084 (2007)

    Article  ADS  Google Scholar 

  • Liu, F., Li, Y., Wan, R., Yidong, H., Feng, X., Zhang, W.: Hybrid coupling between long-range surface plasmon polariton mode and dielectric waveguide mode. J. Lightw. Technol. 29, 1265–1273 (2011)

    Article  ADS  Google Scholar 

  • Maji, P.S., Das, R.: Hybrid-Tamm-Plasmon-Polariton Based Self-Reference Temperature Sensor. J. Lightw. Technol. 35, 2833–2839 (2017)

    Article  ADS  Google Scholar 

  • Maji, P.S., Shukla, M.K., Das, R.: Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor. Sens. Actuators B Chem. 255, 729–734 (2018)

    Article  Google Scholar 

  • Matsuoka, J., Kitamura, N., Fujinaga, S., Kitaoka, T., Yamashita, H.: Temperature dependence of refractive index of SiO2 glass. J. Non-Cryst. Solids 135, 86–89 (1991)

    Article  ADS  Google Scholar 

  • McKay, J.A., Rayne, J.A.: Temperature dependence of the infrared absorptivity of the noble metals. Phys. Rev. B 13, 673–685 (1976)

    Article  ADS  Google Scholar 

  • Mollah, M.A., Islam, M.S.: Novel single hole exposed-suspended core localized surface plasmon resonance sensor. IEEE Sens. J. 21, 2813–2820 (2021)

    Google Scholar 

  • Ozbay Plasmonics, E.: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  ADS  Google Scholar 

  • Sasin, M.E., Kaliteevski, M.A., Brand, S., Abram, R.A., Chamberlain, J.M., Iorsh, I.V., Shelykh, I.A., Egorov, A.Y., Vasil’ev, A.P., Mikhrin, V.S., Kavokin, A.V.: Tamm plasmon-polaritons: first experimental observation. Superlattices Microstruct 47(1), 44–49 (2010)

    Article  ADS  Google Scholar 

  • Sasin, M.E., Seisyan, R.P., Kalitteevski, M.A., Brand, S., Abram, R.A., Chamberlain, J.M., Egorov, A.Y., Vasilev, A.P., Mikhrin, V.S., Kavokin, A.V.: Tamm plasmon polaritons: slow and spatially compact light. Appl. Phys. Lett. 92, 251112 (2008)

    Article  ADS  Google Scholar 

  • Sharma, A.K., Pattanaik, H.S., Mohr, G.J.: On temperature sensing capability of a fibre optic SPR mechanism based on bimetallic alloy nanoparticles. J. Phys. D: Appl. Phys. 42, 045104 (2009)

    Article  ADS  Google Scholar 

  • Srivastava, T., Das, R., Jha, R.: Highly sensitive plasmonic temperature sensorbased on photonic crystal surface plasmon waveguide. Plasmonics 8, 515–521 (2013a)

    Article  Google Scholar 

  • Srivastava, T., Das, R., Jha, R.: Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide. Plasmonics 8, 515–521 (2013b)

    Article  Google Scholar 

  • Symonds, C., Lemaître, A., Homeyer, E., Plenet, J.C., Bellessa, J.: Emission of Tamm plasmon/exciton polaritons. Appl. Phys. Lett. 95(15), 151114 (2009)

    Article  ADS  Google Scholar 

  • Symonds, C., Lemaître, A., Senellart, P., Jomaa, M.H., Aberra, S., Homeyer, G.E., Brucoli, G., Bellessa, J.: Lasing in a hybrid GaAs/silver Tamm structure. Appl. Phys. Lett. 100(12), 121122 (2012)

    Article  ADS  Google Scholar 

  • Symonds, C., Lheureux, G., Hugonin, J.P., Greffet, J.J., Laverdant, J., Brucoli, G., Lemaitre, A., Senellart, P., Bellessa, J.: Confined Tamm plasmon lasers. Nano Lett. 13(7), 3179–3184 (2013)

    Article  ADS  Google Scholar 

  • Xue, C.H., Jiang, H.T., Lu, H., Du, G.Q., Chen, H.: Efficient third-harmonic generation based on Tamm plasmon polaritons. Opt. Lett. 38(6), 959–961 (2013)

    Article  ADS  Google Scholar 

  • Zhang, W.L., Jiang, Y., Zhu, Y.Y., Wang, F., Rao, Y.J.: All-optical bistable logic control based on coupled Tamm plasmons. Opt. Lett. 38(20), 4092–4095 (2013)

    Article  ADS  Google Scholar 

  • Zhang, X.L., Song, J.F., Li, X.B., Feng, J., Sun, H.B.: Optical Tamm state enhanced broad-band absorption of organic solar cells. Appl. Phys. Lett. 101(24), 243901 (2012)

    Article  ADS  Google Scholar 

  • Zhang, W.L., Yu, S.F.: Bistable switching using an optical Tamm cavity with a Kerr medium. Opt. Commun. 283(12), 2622–2626 (2010)

    Article  ADS  Google Scholar 

  • Zhou, H.C., Yang, G., Wang, K., Long, H., Lu, P.X.: Multiple optical Tamm states at a metal-dielectric mirror interface. Opt. Lett. 35(24), 4112–4114 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Amit Ranjan Maity would like to acknowledge the Department of Biotechnology for Ramalingaswami Re-entry fellowship (BT/RLF/Re-entry/53/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Sona Maji.

Ethics declarations

Competing interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, P.S., Maity, A.R. Polarization modal analysis of Tamm plasmon at the metal-DBR interface for temperature sensing. Opt Quant Electron 54, 349 (2022). https://doi.org/10.1007/s11082-022-03725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03725-5

Keywords

Navigation