Skip to main content
Log in

Research progress on electromagnetic wave absorption based on magnetic metal oxides and their composites

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Recently, great efforts have been made to develop materials based on magnetic metal oxides to realize excellent electromagnetic wave absorption properties. Nevertheless, the use of traditional magnetic metal oxide materials with certain magnetic losses is not only difficult to meet the final requirements, but also limits the thickness of the absorber and their range of use. Therefore, some promising magnetic metal oxide composites with excellent conductive and magnetic losses have been fabricated, which have specific structures having and interfacial polarization and multiple reflections. Here, the theory of electromagnetic microwave absorption is discussed. Afterwards, the accomplishments in the fabrication of magnetic metal oxides and their composites are reviewed. Furthermore, electromagnetic wave absorption performances and relevant influencing factors of magnetic metal oxides and their composites are exhibited in detail. At last, current challenges are exhibited and future prospects of this developing field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [74] Copyright 2017. Springer. Schematic fabrication process of Fe3O4@NPC@RGO composite and i SEM and j TEM images, k impedance matching plots, and l 3D RL plots of Fe3O4@NPC@RGO composite. Reproduced with permission from Ref. [90] Copyright 2020. The Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [87] Copyright 2017. American Chemical Society. f SEM image, g impedance match plot, h complex permittivity and complex permeability curves plot, i variation of RL with frequency for RGO/Fe3O4/ZnO. Reproduced with permission from Ref. [92] Copyright 2017. Elsevier

Fig. 5

Reproduced with permission from Ref. [37] Copyright 2021. Elsevier. h Schematic fabrication process of the synthesis process of MWCNTs/ZnFe2O4 hybrid composites, i SEM image and j RL plot. Reproduced with permission from Ref. [94] Copyright 2017. Elsevier

Fig. 6
Fig. 7

Reproduced with permission from Ref. [96] Copyright 2016. Wiley–VCH Verlag GmbH & Co. e Schematic fabrication process of porous γ-Fe2O3 nanosheets, f SEM and g TEM images of H-Al-Fe2O3, h real and i imaginary parts of the electromagnetic parameters, g 3D and k frequency dependence of the RL of H-Al-Fe2O3. Reproduced with permission from Ref. [77] Copyright 2021. Elsevier

Fig. 8

Reproduced with permission from Ref. [98] Copyright 2019. Elsevier. h Schematic fabrication process of γ-Fe2O3 nanocubes/graphene (GFC), and the corresponding i SEM image, j TEM image, k complex permittivity and complex permeability, l dielectric and magnetic loss tangents, m 2D plot, and n frequency dependence of RL. Reproduced with permission from Ref. [99] Copyright 2020. Elsevier

Fig. 9

Reproduced with permission from Ref. [100]. Copyright 2020. Elsevier

Fig. 10

Reproduced with permission from Ref. [101] Copyright 2020. Elsevier

Fig. 11

Reproduced with permission from Ref. [103] Copyright 2020. Elsevier. h Schematic fabrication process, i, j SEM images, and k, j dielectric loss and magnetic loss factors of inverse opal of Co3O4@TiO2. From reference [104] Copyright 2021. American Chemical Society

Fig. 12

Reproduced with permission from Ref. [79] Copyright 2017. American Chemical Society. h Schematic preparation process of 3D porous Ni/NiO microspheres, i, j SEM images, k, l 3D plots of dielectric and magnetic loss factors, and m, n RL and frequency dependence of electromagnetic wave absorption. Reproduced with permission from Ref. [105] Copyright 2021. Elsevier

Fig. 13

Reproduced with permission from Ref. [106] Copyright 2019. Elsevier. i Schematic synthesis process, j, k SEM and TEM images, l, m dielectric and magnetic loss factors, n, o frequency dependence of RL of Ni/NiO@C composites. Reproduced with permission from Ref. [107] Copyright 2021. Elsevier

Fig. 14

Reproduced with permission from Ref. [108] Copyright 2019. Elsevier B.V. and Science China Press. Schematic fabrication process of ALD NiO on the surface of CNTs, g, h TEM images of CNT and CNT@NiO, i elemental mapping images of C, Ni, and O of CNT@NiO, j, k dielectric and magnetic loss factors, and l 2D RL. Reproduced with permission from Ref. [110] Copyright 2021. The Royal Society of Chemistry

Fig. 15

Reproduced with permission from Ref. [80] Copyright 2017. Elsevier. g SEM and h TEM images and corresponding SAED mode and i HRTEM image, j, k dielectric and magnetic loss factors in 2–18 GHz, l electromagnetic wave loss mechanism, m RL of CoFe2O4-HNP/G. Reproduced with permission from Ref. [112] Copyright 2018. The Royal Society of Chemistry

Fig. 16

Reproduced with permission from Ref. [115] Copyright 2019. Elsevier. h Schematic synthesis process, i SEM image, j, k dielectric and magnetic loss factors, l Cole–Cole plot, m impedance matching plot, and n 2D RL of CoFe2O4/RGO composite. Reproduced with permission from Ref. [117] Copyright 2019. American Chemical Society

Fig. 17

Reproduced with permission from Ref. [114] Copyright 2021. Elsevier. h SEM and i TEM images, j, k, l, m real and imaginary parts of dielectric constant and permeability, n, p, o, q 3D RL curves and RLmin versus frequency of CoxFe3-xO4/MoS2 (x = 1.5, 0.75, 0.5) NCs. Reproduced with permission from Ref. [40] Copyright 2019. American Chemical Society

Fig. 18

Reproduced with permission from Ref. [81] Copyright 2019. Elsevier. g Synthesis process, h, i SEM images, j impedance matching plots, k, l RL curves and 3D RL of NiFe2O4/N-GN/ZnO composites. Reproduced with permission from Ref. [38] Copyright 2019. Elsevier

Fig. 19

Reproduced with permission from Ref. [82] Copyright 2021. Elsevier. h Schematic fabrication process, i SEM image and elemental mapping, j, k dielectric and magnetic loss factors, l attenuation constant α, m 2D plot of RL values, n frequency dependence plot, and o 3D plot of 1D NiO/NiCo2O4 microbars. Reproduced with permission from Ref. [124] Copyright 2020. Elsevier

Fig. 20

Reproduced with permission from Ref. [66] Copyright 2020. Elsevier

Similar content being viewed by others

References

  1. Xu H, Yin X, Zhu M, Li M, Zhang H, Wei H, Zhang L, Cheng L (2019) Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142:346–353

    CAS  Google Scholar 

  2. Ma Y, Zhuang Z, Ma M, Yang Y, Li W, Lin J, Dong M, Wu S, Ding T, Guo Z (2019) Solid polyaniline dendrites consisting of high aspect ratio branches self-assembled using sodium lauryl sulfonate as soft templates: synthesis and electrochemical performance. Polymer 182:121808

    Google Scholar 

  3. Hong H, Gao L, Zheng Y, Xing X, Sun F, Liu T, Murugadoss V, Guo Z, Yang M, Zhang H (2021) A path of multi-energy hybrids of concentrating solar energy and carbon fuels for low CO2 emission. ES Energy Environ 13:1–7

    CAS  Google Scholar 

  4. Aljeboree AM, Mahdi AB, Albahadly WKY, Izzat SE, Kubaisy MMRAL, Mohammed BM, Aldulaimi AKO, Alkaim AF (2022) Enhancement of adsorption of paracetamol drug on carbon nanotubes concerning wastewater treatment. Eng Sci 20:321–329

    CAS  Google Scholar 

  5. Chakraborty I, Guo Z (2022) A. Bandyopadhyay, P. Sahoo, Physical modifications and algorithmic predictions behind further advancing 2D water splitting photocatalyst: an overview. Eng Sci 20:34–46

    CAS  Google Scholar 

  6. Fonzeu Monguen CK, Daniel S, Yu D, Ayodele OB, Tian Z-Y (2022) Progress in catalysis for industrial applications. Eng Sci 20:47–79

    Google Scholar 

  7. Nayak SY, Shenoy S, Kini CR, Sultan MTH, Shahar FS (2022) Experimental investigation into mechanical properties of coconut shell powder modified epoxy/ 3d E-glass composites. Eng Sci 20:306–320

    CAS  Google Scholar 

  8. Zhao B, Li Y, Zeng Q, Wang L, Ding J, Zhang R, Che R (2020) Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 16:e2003502

    Google Scholar 

  9. Puthiyedath Narayanan A, Narayanan Unni KN, Peethambharan Surendran K (2021) Aerogels of V2O5 nanowires reinforced by polyaniline for electromagnetic interference shielding. Chem Eng J 408:127239

    CAS  Google Scholar 

  10. Song Q, Ye F, Kong L, Shen Q, Han L, Feng L, Yu G, Pan Y, Li H (2020) Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv Func Mater 30:2000475

    CAS  Google Scholar 

  11. Lv H, Guo Y, Wu G, Ji G, Zhao Y, Xu ZJ (2017) Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl Mater Interfaces 9:5660–5668

    CAS  Google Scholar 

  12. Wei Y, Luo W, Zhuang Z, Dai B, Ding J, Li T, Ma M, Yin X, Ma Y (2021) Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv Compos Mater 4:1082–1091

    CAS  Google Scholar 

  13. Miernicki M, Hofmann T, Eisenberger I, von der Kammer F (2019) A. Praetorius, Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat Nanotechnol 14:208–216

    CAS  Google Scholar 

  14. Li Y, Guo J, Li M, Tang Y, Murugadoss V, Seok I, Yu J, Sun L, Sun C, Luo Y (2021) Recent application of cellulose gel in flexible sensing-a review. ES Food & Agroforestry 4:9–27

    Google Scholar 

  15. Hopmann C, Wang H, Breiing M, Fischer K, Emonts M, Wang J (2022) Novel test cell for overall and spatial mechanical analysis of sheet molding compound composite part in view of heterogeneity. Eng Sci 20:144–156

    Google Scholar 

  16. Keni LG, Hayoz MJ, Shenoy S, Hegde P, Prakashini K, Tamagawa M, Khader SM, Zuber M (2022) Ureterdynamic analysis of multiple peristaltic waves on variable diameter ureter. Eng Sci 17:256–265

    Google Scholar 

  17. Kan A, Zhang Q, Chen Z, Cao D (2021) Innovation on thermal conductivity measurement device of vacuum insulation panel with double hemispheres chambers. ES Energy Environ 15:28–33

    Google Scholar 

  18. Naik N, Shivamurthy B, Thimmappa BH, Gupta A, Guo JZ, Seok I (2022) A review on processing methods and characterization techniques of green composites. Eng Sci 20:80–99

    CAS  Google Scholar 

  19. Chen Y, Guo Z, Das R, Jiang Q (2020) Starch-based carbon nanotubes and graphene: preparation, properties and applications. ES Food & Agroforestry 2:13–21

    Google Scholar 

  20. Deng L, Zhang H (2020) Recent advances in probiotics encapsulation by electrospinning. ES Food & Agroforestry 2:3–12

    Google Scholar 

  21. Lokya V, Swathi M, Mallikarjuna N, Padmasree K (2020) Response of midgut trypsin- and chymotrypsin-like proteases of helicoverpa armigera larvae upon feeding with peanut BBI: biochemical and biophysical characterization of PnBBI. Front Plant Sci 11:266

    Google Scholar 

  22. Nong W, Liu X, Wang Q, Wu J, Guan Y (2020) Metal-organic framework-based materials: synthesis, stability and applications in food safety and preservation. ES Food & Agroforestry 1:11–40

    Google Scholar 

  23. An J, Yang E-H, Duan F, Xiang Y, Yang J (2021) Synthesis and characterization of robust SiO2-PCM microcapsules. ES Mater Manuf 15:34–45

    Google Scholar 

  24. Liu P, Gao S, Wang Y, Huang Y, Wang Y, Luo J (2019) Core-shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl Mater Interfaces 11:25624–25635

    CAS  Google Scholar 

  25. Gao X, Wang B, Wang K, Xu S, Liu S, Liu X, Jia Z, Wu G (2021) Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J Colloid Interface Sci 583:510–521

    CAS  Google Scholar 

  26. Qiao J, Zhang X, Xu D, Kong L, Lv L, Yang F, Wang F, Liu W, Liu J (2020) Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem Eng J 380:122591

    CAS  Google Scholar 

  27. Pan F, Yu L, Xiang Z, Liu Z, Deng B, Cui E, Shi Z, Li X, Lu W (2021) Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 172:506–515

    CAS  Google Scholar 

  28. Keni LG, Shenoy S, Hegde P, Prakashini K, Tamagawa M, Khader SMA, Hameed BZ, Zuber M (2022) Investigating the effect of a single peristalsis wave on unobstructed ureter using a computational technique. Eng Sci 20:330–340

  29. Cheng Y, Zhang G (2022) Impact of atomic coating on thermal conductivity of nano materials. ES Energy Environ 17:1–10

    Google Scholar 

  30. Yu Z, Bai Y, Wang JH, Li Y (2021) Effects of functional additives on structure and properties of polycarbonate-based composites filled with hybrid chopped carbon fiber/graphene nanoplatelet fillers. ES Energy Environ 12:66–76

    Google Scholar 

  31. Sun Z, Qu K, Cheng Y, You Y, Huang Z, Umar A, Ibrahim YSA, Algadi H, Castañeda L, Colorado HA, Guo Z (2021) Corncob-derived activated carbon for efficiently adsorption dye in sewage. ES Food & Agroforestry 4:61–74

    CAS  Google Scholar 

  32. Gijare M, Chaudhari S, Ekar S, Garje A (2021) Reduced graphene oxide based electrochemical nonenzymatic human serum glucose sensor. ES Mater Manuf 14:110–119

    Google Scholar 

  33. Wen B, Yang H, Lin Y, Ma L, Qiu Y, Hu F, Zheng Y (2021) Synthesis of core–shell Co@S-doped carbon@mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J Mater Chem A 9:3567–3575

    CAS  Google Scholar 

  34. Wang X, Pan F, Xiang Z, Zeng Q, Pei K, Che R, Lu W (2020) Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157:130–139

    CAS  Google Scholar 

  35. Wu N, Du W, Hu Q, Vupputuri S, Jiang Q (2020) Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci 13:11–23

    Google Scholar 

  36. Wu X, Zhong J, Zhang H, Liu H, Mai J, Shi S, Deng Q, Wang N (2021) Garnet Li7La3Zr2O12 solid-state electrolyte: environmental corrosion, countermeasures and applications. ES Energy Environ 14:22–33

    CAS  Google Scholar 

  37. Liao Z, Ma M, Tong Z, Bi Y, Chung KL, Qiao M, Ma Y, Ma A, Wu G, Li Z, Zhang Y (2021) Fabrication of one-dimensional ZnFe2O4@carbon@MoS2/FeS2 composites as electromagnetic wave absorber. J Colloid Interface Sci 600:90–98

    CAS  Google Scholar 

  38. Wang Y, Gao X, Wu X, Zhang W, Luo C, Liu P (2019) Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber. Chem Eng J 375:121942

    CAS  Google Scholar 

  39. Zhao Y, Zhang H, Yang X, Huang H, Zhao G, Cong T, Zuo X, Fan Z, Yang S, Pan L (2021) In situ construction of hierarchical core–shell Fe3O4@C nanoparticles-helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 171:395–408

  40. Long L, Yang E, Qi X, Xie R, Bai Z-C, Qin S, Deng C, Zhong W (2019) Positive and reverse core/shell structure CoxFe3–xO4/MoS2 and MoS2/CoxFe3–xO4 nanocomposites: selective production and outstanding electromagnetic absorption comprehensive performance. ACS Sustain Chem Eng 8:613–623

    Google Scholar 

  41. Zhou X, Jia Z, Feng A, Qu S, Wang X, Liu X, Wang B, Wu G (2020) Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance. J Colloid Interface Sci 575:130–139

    CAS  Google Scholar 

  42. Mu Y, Ma ZH, Liang HS, Zhang LM, Wu HJ (2022) Ferrite-based composites and morphology-controlled absorbers. Rare Met 41:28

    Google Scholar 

  43. Griffith DJ, Ruppeiner G (1981) Introduction to electrodynamics. Am J Phys 49:1188–1189

    Google Scholar 

  44. Liu Y, Murugadoss V, Cui B, Tang D, Si Y, Zhan Z, Cui L (2021) Synthesis of Janus Fe3O4&mSiO2 nanocarriers for chemo-microwave therapy of cancer cells. ES Energy Environ 14:43–53

    CAS  Google Scholar 

  45. Pai A, Kini AR, Kini CR (2022) S.S. B Effect of natural fibre-epoxy plies on the mechanical and shock wave impact response of fibre metal laminates. Eng Sci 19:292–300

    CAS  Google Scholar 

  46. Wang R, Li S, Hu P, Chen S, Wang J (2021) Densification behavior and microstructure evolution of Mo manocrystals by microwave sintering. ES Mater Manuf 13:97–105

    Google Scholar 

  47. Rehman SU, Sun M, Xu M, Liu J, Ahmed R, Aslam MA, Ahmad RA, Bi H (2020) Carbonized zeolitic imidazolate framework-67/polypyrrole: a magnetic-dielectric interface for enhanced microwave absorption properties. J Colloid Interface Sci 574:87–96

    Google Scholar 

  48. Liu P, Huang Y, Yan J, Zhao Y (2016) Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J Mater Chem C 4:6362–6370

    CAS  Google Scholar 

  49. Lu Y, Wang Y, Li H, Lin Y, Jiang Z, Xie Z, Kuang Q, Zheng L (2015) MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl Mater Interfaces 7:13604–13611

    CAS  Google Scholar 

  50. Wang Y, Chen D, Yin X, Xu P, Wu F, He M (2015) Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl Mater Interfaces 7:26226–26234

    CAS  Google Scholar 

  51. Dai B, Dong F, Yu J, Feng S, Wang H, Li T, Ma M, Ding J, Ma Y (2022) Construction of Ni@polypyrrole nanochains/Ti3C2Tx ternary composites with excellent microwave absorption properties. Mater Chem Front 6:3179–3192

  52. Qu B, Zhu C, Li C, Zhang X, Chen Y (2016) Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl Mater Interfaces 8:3730–3735

    CAS  Google Scholar 

  53. Qiu Y, Lin Y, Yang H, Wang L, Wang M, Wen B (2020) Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem Eng J 383:123207

    CAS  Google Scholar 

  54. Dai B, Dong F, Wang H, Qu Y, Ding J, Ma Y, Ma M, Li T (2023) Fabrication of CuS/Fe3O4@polypyrrole flower-like composites for excellent electromagnetic wave absorption. J Colloid Interface Sci 634:481–494

    CAS  Google Scholar 

  55. Gao S, Zhang Y, Xing H, Li H (2020) Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chem Eng J 387

  56. Dai B, Ma Y, Feng S, Wang H, Ma M, Ding J, Yin X, Li T (2022) Fabrication of one-dimensional M (Co, Ni)@polyaniline nanochains with adjustable thickness for excellent microwave absorption properties. J Colloid Interface Sci 627:113–125

    CAS  Google Scholar 

  57. Kambale SV, Lokh BJ (2022) Effect of temperature on structural, morphological and electrochemical properties of the spray pyrolysed CuO@stainless-steel electrodes via non-aqueous route: supercapacitive approach. ES Energy Environ 16:59–66

  58. Wen B, Cao M-S, Hou Z-L, Song W-L, Zhang L, Lu M-M, Jin H-B, Fang X-Y, Wang W-Z, Yuan J (2013) Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65:124–139

    CAS  Google Scholar 

  59. Dai B, Ma Y, Dong F, Yu J, Ma M, Thabet HK, El-Bahy SM, Ibrahim MM, Huang M, Seok I, Roymahapatra G, Naik N, Xu BB, Ding J, Li T (2022) Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv Compo Mater 5:704–754

    Google Scholar 

  60. Cui Y, Yang K, Wang J, Shah T, Zhang Q, Zhang B (2021) Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 172:1–14

    CAS  Google Scholar 

  61. Yan J, Huang Y, Yan Y, Ding L, Liu P (2019) High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl Mater Interfaces 11:40781–40792

    CAS  Google Scholar 

  62. Shu R, Zhang J, Guo C, Wu Y, Wan Z, Shi J, Liu Y, Zheng M (2020) Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band. Chem Eng J 384:123266

    CAS  Google Scholar 

  63. Zhang X, Zhang X, Yuan H, Li K, Ouyang Q, Zhu C, Zhang S, Chen Y (2020) CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem Eng J 383:123208

    CAS  Google Scholar 

  64. Qiao M, Lei X, Ma Y, Tian L, He X, Su K, Zhang Q (2018) Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res 11:1500–1519

    CAS  Google Scholar 

  65. Lv H, Liang X, Ji G, Zhang H, Du Y (2015) Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl Mater Interfaces 7:9776–9783

    CAS  Google Scholar 

  66. Wei S, Wang X, Zhang B, Yu M, Zheng Y, Wang Y, Liu J (2017) Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance. Chem Eng J 314:477–487

    CAS  Google Scholar 

  67. Feng S, Zhai F, Su H, Sridhar D, Algadi H, Xu BB, Pashameah RA, Alzahrani E, Abo-Dief HM, Ma Y, Li T, Guo Z (2023) Progress of metal organic frameworks-based composites in electromagnetic wave absorption. Materials Today Physics 30:100950

    Google Scholar 

  68. Rehman SU, Xu S, Xu H, Tao T, Li Y, Yu Z, Ma K, Xu W, Wang J (2022) The role of NMR in metal organic frameworks: deep insights into dynamics, structure and mapping of functional groups. Mater Today Adv 16:100287

  69. Wen B, Yang H, Lin Y, Ma L, Qiu Y, Hu F (2021) Controlling the heterogeneous interfaces of S, Co co-doped porous carbon nanosheets for enhancing the electromagnetic wave absorption. J Colloid Interface Sci 586:208–218

    CAS  Google Scholar 

  70. Stroh C, Tolea F, Valeanu M, Diamandescu L, Xu T, Sorescu M (2015) Ruthenium oxide–hematite magnetic ceramic nanostructures. Ceram Int 41:14367–14375

    CAS  Google Scholar 

  71. Li X, Lin Z, Wei Y, Luo W, Ding J, Li T, Ma Y (2022) MXene-MnO2-CoNi layered double hydroxides//activated carbon flexible asymmetric supercapacitor. J Energy Storage 55:105668

  72. Wei Y, Luo W, Li X, Lin Z, Hou C, Ma M, Ding J, Li T, Ma Y (2022) PANI-MnO2 and Ti3C2Tx (MXene) as electrodes for high-performance flexible asymmetric supercapacitors. Electrochim Acta 406:139874

    CAS  Google Scholar 

  73. Shu X, Zhou J, Lian W, Jiang Y, Wang Y, Shu R, Liu Y, Han J, Zhuang Y (2021) Size-morphology control, surface reaction mechanism and excellent electromagnetic wave absorption characteristics of Fe3O4 hollow spheres. J Alloy Compd 854:157087

    CAS  Google Scholar 

  74. Tian C, Du Y, Cui C, Deng Z, Xue J, Xu P, Qiang R, Wang Y, Han X (2017) Synthesis and microwave absorption enhancement of yolk–shell Fe3O4@C microspheres. J Mater Sci 52:6349–6361

    CAS  Google Scholar 

  75. Wang X, Huang J, Feng H, Li J, Xu Z, Xiong K, Zhang Y (2022) Constructing dendrite-flower-shaped Fe3O4 crystals in glass-ceramic materials as novel broadband high-efficient electromagnetic wave absorbers. J Alloy Compd 901:163541

    CAS  Google Scholar 

  76. Sun G, Dong B, Cao M, Wei B, Hu C (2011) Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater 23:1587–1593

    CAS  Google Scholar 

  77. Zhang H, Xu J, Wang S, Liu Q, Kong X (2022) Constructing holey γ-Fe2O3 nanosheets with enhanced capability for microwave absorption. Mater Today Chem 23:100690

  78. Yusuf JY, Soleimani H, Chuan LK, Sanusi YK, Adebayo LL (2021) Physicochemical properties and microwave absorption performance of Co3O4 and banana peel-derived porous activated carbon composite at X-band frequency. J Alloy Compd 888:161474

    CAS  Google Scholar 

  79. Liu P, Ng VMH, Yao Z, Zhou J, Lei Y, Yang Z, Lv H, Kong LB (2017) Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl Mater Interfaces 9:16404–16416

    CAS  Google Scholar 

  80. Shang T, Lu Q, Chao L, Qin Y, Yun Y, Yun G (2018) Effects of ordered mesoporous structure and La-doping on the microwave absorbing properties of CoFe2O4. Appl Surf Sci 434:234–242

    CAS  Google Scholar 

  81. Mandal D, Gorai A, Mandal K (2019) Electromagnetic wave trapping in NiFe2O4 nano-hollow spheres: an efficient microwave absorber. J Magn Magn Mater 485:43–48

    CAS  Google Scholar 

  82. Zhou X, Wen J, Wang Z, Ma X, Wu H (2021) Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber. J Colloid Interface Sci 602:834–845

    CAS  Google Scholar 

  83. Qin M, Liang H, Zhao X, Wu H (2020) Glycine-assisted solution combustion synthesis of NiCo2O4 electromagnetic wave absorber with wide absorption bandwidth. Ceram Int 46:22313–22320

    CAS  Google Scholar 

  84. Chang Q, Liang H, Shi B, Wu H (2021) Sodium oxalate-induced hydrothermal synthesis of wood-texture-column-like NiCo2O4 with broad bandwidth electromagnetic wave absorption performance. J Colloid Interface Sci 600:49–57

    CAS  Google Scholar 

  85. Wu H, Qin M, Zhang L (2020) NiCo2O4 constructed by different dimensions of building blocks with superior electromagnetic wave absorption performance. Compos B Eng 182:107620

    CAS  Google Scholar 

  86. Liu P, Ng VMH, Yao Z, Zhou J, Lei Y, Yang Z, Kong LB (2017) Microwave absorption properties of double-layer absorbers based on Co0.2Ni0.4Zn0.4Fe2O4 ferrite and reduced graphene oxide composites. J Alloys Compd 701:841–849

  87. Wu Z, Tan D, Tian K, Hu W, Wang J, Su M, Li L (2017) Facile preparation of core–shell Fe3O4@polypyrrole composites with superior electromagnetic wave absorption properties. J Phys Chem 121:15784–15792

    CAS  Google Scholar 

  88. Wang Y, Gao X, Zhang L, Wu X, Wang Q, Luo C, Wu G (2019) Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Appl Surf Sci 480:830–838

    CAS  Google Scholar 

  89. Ding J, Wang L, Zhao Y, Xing L, Yu X, Chen G, Zhang J, Che R (2019) Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 15:e1902885

    Google Scholar 

  90. Xiang Z, Xiong J, Deng B, Cui E, Yu L, Zeng Q, Pei K, Che R, Lu W (2020) Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications. J Mater Chem C 8:2123–2134

    CAS  Google Scholar 

  91. Yang Y, Xia L, Zhang T, Shi B, Huang L, Zhong B, Zhang X, Wang H, Zhang J, Wen G (2018) Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem Eng J 352:510–518

    CAS  Google Scholar 

  92. Zhang N, Huang Y, Wang M (2018) 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanoparticles co-decorated for efficient electromagnetic wave absorption. Compos B Eng 136:135–142

    CAS  Google Scholar 

  93. Li J, Xie Y, Lu W, Chou T-W (2018) Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films. Carbon 129:76–84

    CAS  Google Scholar 

  94. Shu R, Zhang G, Wang X, Gao X, Wang M, Gan Y, Shi J, He J (2018) Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem Eng J 337:242–255

    CAS  Google Scholar 

  95. Lin Y, Dai J, Yang H, Wang L, Wang F (2018) Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties. Chem Eng J 334:1740–1748

    CAS  Google Scholar 

  96. You W, Bi H, She W, Zhang Y, Che R (2017) Dipolar-distribution cavity gamma-Fe2O3 @C@alpha-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 13:1602779

    Google Scholar 

  97. Wang S, Jiao Q, Shi Q, Zhu H, Feng T, Lu Q, Feng C, Li H, Shi D, Zhao Y (2020) Synthesis of porous nitrogen-doped graphene decorated by γ-Fe2O3 nanorings for enhancing microwave absorbing performance. Ceram Int 46:1002–1010

    CAS  Google Scholar 

  98. Xiang Z, Deng B, Huang C, Liu Z, Song Y, Lu W (2020) Rational design of hollow nanosphere γ-Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption. J Alloy Compd 822:153570

    CAS  Google Scholar 

  99. Wang F, Li X, Chen Z, Yu W, Loh KP, Zhong B, Shi Y, Xu Q-H (2021) Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chem Eng J 405:126676

    CAS  Google Scholar 

  100. Chai J, Cheng J, Zhang D, Xiong Y, Yang X, Ba X, Ullah S, Zheng G, Yan M, Cao M (2020) Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets. J Alloy Compd 829:1901448

    Google Scholar 

  101. Qin Z, Wang C, Wang J, Zhong B, Li X, Chen X, Zhuang H, Zhang P (2021) Spherical shape Co@Co3O4 core-shell composites grown on surface of graphite nanosheets with ultra-thin and excellent electromagnetic absorption performance. Appl Surf Sci 539:148253

    CAS  Google Scholar 

  102. Qin Z, Wang C, Ma Y, Xia L, Zhong B, Li X, Zhang P (2022) ZIF-67/GNs derived Co3O4/GNs multilayer flower and porous structure as an efficient electromagnetic wave absorbing material for excellent absorbing properties. Appl Surf Sci 575:151789

  103. Zhou X, Jia Z, Feng A, Kou J, Cao H, Liu X, Wu G (2020) Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber. Compos B Eng 192:107980

    CAS  Google Scholar 

  104. Zhang C, Peng Y, Zhang T, Guo W, Yuan Y, Li Y (2021) In situ dual-template method of synthesis of inverse-opal Co3O4@TiO2 with wideband microwave absorption. Inorg Chem 60:18455–18465

    CAS  Google Scholar 

  105. Shu Y, Zhao T, Li X, Yang L, Cao S (2022) Enhanced electromagnetic wave absorption properties integrating diverse loss mechanism of 3D porous Ni/NiO microspheres. J Alloy Compd 897:163227

    CAS  Google Scholar 

  106. Wu H, Lan D, Li B, Zhang L, Fu Y, Zhang Y, Xing H (2019) High-entropy alloy@air@Ni–NiO core-shell microspheres for electromagnetic absorption applications. Compos B Eng 179:107524

    CAS  Google Scholar 

  107. Zhou X, Jia Z, Zhang X, Wang B, Wu W, Liu X, Xu B, Wu G (2021) Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. J Mater Sci Technol 87:120–132

    CAS  Google Scholar 

  108. Zhang D, Xiong Y, Cheng J, Chai J, Liu T, Ba X, Ullah S, Zheng G, Yan M, Cao M (2020) Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci Bull 65:138–146

    CAS  Google Scholar 

  109. Wang L, Xing H, Gao S, Ji X, Shen Z (2017) Porous flower-like NiO@graphene composites with superior microwave absorption properties. J Mater Chem C 5:2005–2014

    Google Scholar 

  110. Zhou M, Wan G, Mou P, Teng S, Lin S, Wang G (2021) CNT@NiO/natural rubber with excellent impedance matching and low interfacial thermal resistance toward flexible and heat-conducting microwave absorption applications. J Mater Chem C 9:869–880

    CAS  Google Scholar 

  111. Gao Y, Du H, Li R, Zhang Q, Fan B, Zhao B, Li N, Wang X, Chen Y, Zhang R (2021) Multi-phase heterostructures of flower-like Ni(NiO) decorated on two-dimensional Ti3C2Tx/TiO2 for high-performance microwave absorption properties. Ceram Int 47:10764–10772

    CAS  Google Scholar 

  112. Yan F, Zhang S, Zhang X, Li C, Zhu C, Zhang X, Chen Y (2018) Growth of CoFe2O4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers. J Mater Chem C 6:12781–12787

    CAS  Google Scholar 

  113. Wu H, Wu G, Wang L (2015) Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol 269:443–451

    CAS  Google Scholar 

  114. Zhang H, Jia Z, Wang B, Wu X, Sun T, Liu X, Bi L, Wu G (2021) Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@mesoporous hollow carbon spheres. Chem Eng J 421:129960

    CAS  Google Scholar 

  115. Zhu T, Chang S, Song Y-F, Lahoubi M, Wang W (2019) PVP-encapsulated CoFe2O4/rGO composites with controllable electromagnetic wave absorption performance. Chem Eng J 373:755–766

    CAS  Google Scholar 

  116. Huang L, Li J, Wang Z, Li Y, He X, Yuan Y (2019) Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 143:507–516

    CAS  Google Scholar 

  117. Liang X, Quan B, Sun B, Man Z, Xu X, Ji G (2019) Extended effective frequency of three-dimensional graphene with sustainable energy attenuation. ACS Sustain Chem Eng 7:10477–10483

    CAS  Google Scholar 

  118. He J, Liu S, Deng L, Shan D, Cao C, Luo H, Yan S (2020) Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites. Appl Surf Sci 504:144210

    CAS  Google Scholar 

  119. Guo Y, Wang D, Bai T, Liu H, Zheng Y, Liu C, Shen C (2021) Electrostatic self-assembled NiFe2O4/Ti3C2Tx MXene nanocomposites for efficient electromagnetic wave absorption at ultralow loading level. Adv Comp Mater 4:602–613

    CAS  Google Scholar 

  120. Wang Q, Wang J, Zhao Y, Zhao Y, Yan J, Deng Z, Zhang H, Zhao W, Tian J, Yun J, Zhang Z, Huang Z (2022) NiO/NiFe2O4@N-doped reduced graphene oxide aerogel towards the wideband electromagnetic wave absorption: experimental and theoretical study. Chem Eng J 430:132814

    CAS  Google Scholar 

  121. Abdalla I, Yu J, Li Z, Ding B (2018) Nanofibrous membrane constructed magnetic materials for high-efficiency electromagnetic wave absorption. Compos B Eng 155:397–404

    CAS  Google Scholar 

  122. Yan F, Guo D, Zhang S, Li C, Zhu C, Zhang X, Chen Y (2018) An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property. Nanoscale 10:2697–2703

    CAS  Google Scholar 

  123. Liu Z, Wang Y, Jia Z, Ling M, Yan Y, Chai L, Du H, Wu G (2022) In situ constructed honeycomb-like NiFe2O4@Ni@C composites as efficient electromagnetic wave absorber. J Colloid Interface Sci 608:2849–2859

    CAS  Google Scholar 

  124. Qin M, Liang H, Zhao X, Wu H (2020) Filter paper templated one-dimensional NiO/NiCo2O4 microrod with wideband electromagnetic wave absorption capacity. J Colloid Interface Sci 566:347–356

    CAS  Google Scholar 

  125. Wen J, Li X, Chen G, Wang Z, Zhou X, Wu H (2021) Controllable adjustment of cavity of core-shelled Co3O4@NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption. J Colloid Interface Sci 594:424–434

    CAS  Google Scholar 

  126. Liu X, Hao C, Jiang H, Zeng M, Yu R (2017) Hierarchical NiCo2O4/Co3O4/NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. J Mater Chem C 5:3770–3778

    CAS  Google Scholar 

  127. Cheng X, Zhou X, Wang S, Liu Z, Liu Q, Zhang Y, Liu Q, Li B (2019) Fabrication of NiO/NiCo2O4 mixtures as excellent microwave absorbers. Nanoscale Res Lett 14:155

    Google Scholar 

  128. Ma C, Wang W, Wang Q, Sun N, Hu S, Wei S, Feng H, Hao X, Li W, Kong D, Wang S, Chen S (2021) Facile synthesis of BTA@NiCo2O4 hollow structure for excellent microwave absorption and anticorrosion performance. J Colloid Interface Sci 594:604–620

    CAS  Google Scholar 

  129. Du B, Cai M, Wang X, Qian J, He C, Shui A (2021) Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. J Adv Ceram 10:832–842

    CAS  Google Scholar 

  130. Fan J, Xing W, Huang Y, Dai J, Liu Q, Hu F, Xu G (2020) Facile fabrication hierarchical urchin-like C/NiCo2O4/ZnO composites as excellent microwave absorbers. J Alloy Compd 821:153491

    CAS  Google Scholar 

  131. Mhetre MT, Pathan HM, Thakur AV, Lokhande BJ (2022) Preparation of magnesium oxide (MgO) thin films by spray pyrolysis and its capacitive characterizations. ES Energy Environ 18:41–46

    CAS  Google Scholar 

  132. Rajavedhanayagam J, Murugadoss V, Maurya DK, Angaiah S (2022) Cu2NiSnS4/graphene nanohybrid as a newer counter electrode to boost-up the photoconversion efficiency of dye sensitized solar cell. ES Energy Environ 18:65–74

    CAS  Google Scholar 

  133. Wagh SS, Jagtap CV, Kadam VS, Shaikh SF, Ubaidullah M, Pandit B, Salunkhe DB, Patil RS (2022) Silver doped ZnO nanoparticles synthesized for photocatalysis application. ES Energy Environ 17:94–105

    CAS  Google Scholar 

  134. Zhang H, Liu H, Mai J, Ren Y, Wang R, Li X, Deng Q, Wang N (2022) Design of self-wetting interface between garnet solid electrolyte and lithium metal electrode. Eng Sci 20:199–208

    CAS  Google Scholar 

  135. Das HS, Roymahapatra G, Nandi PK, Das R (2021) Study the effect of ZnO/Cu/ZnO multilayer structure by RF magnetron sputtering for flexible display applications. ES Mater Manuf 13:50–56

    CAS  Google Scholar 

  136. Patil GP, Rondiya SR, Bagal VS, Shivhare S, Cross RW, Dzade NY, Jadkar SR, Chavan PG (2021) Field emission characteristics of double walled TiO2 nanotubes. ES Mater Manuf 13:76–81

    CAS  Google Scholar 

  137. Ma S, Fan D (2021) Adaptive multiple-band absorber based on VO2 metasurface. ES Energy Environ 14:63–72

    CAS  Google Scholar 

  138. Kachere AR, Kakade PM, Kanwade AR, Dani P, Mandlik NT, Rondiya SR, Dzade NY, Jadkar SR, Bhosale SV (2021) Zinc oxide/graphene oxide nanocomposites: synthesis, characterization and their optical properties. ES Mater Manuf 16:19–29

    Google Scholar 

  139. Rajput RB, Jamble SN, Kale RB (2021) Solvothermal synthesis of anatase TiO2 for the detoxification of methyl orange dye with improved photodegradation efficiency. Eng Sci 17:176–184

    Google Scholar 

  140. Kuchi R, Dongquoc V, Kim D, Yoon S-G, Park S-Y, Jeong J-R (2017) Large-scale room-temperature aqueous synthesis of Co superstructures with controlled morphology, and their application to electromagnetic wave absorption. Met Mater Int 23:405–411

    CAS  Google Scholar 

  141. Liu X, Wang LS, Ma Y, Zheng H, Lin L, Zhang Q, Chen Y, Qiu Y, Peng DL (2017) Enhanced microwave absorption properties by tuning cation deficiency of perovskite oxides of two-dimensional LaFeO3/C composite in X-band. ACS Appl Mater Interfaces 9:7601–7610

    CAS  Google Scholar 

  142. Sheng M, Wu L, Li X, Yan H, Lu X, Xu Y, Li Y, Tong Y, Qu J (2021) Preparation and characterization of super-toughened PLA/CPU blends via one-step dynamic vulcanization. Eng Sci 19:89–99

    Google Scholar 

  143. Liang Y, Wei Z, Zhang X, Wang R (2022) Fabrication of vanadium oxide@polypyyrole (V2O5@PPy) core-shell nanofiber electrode for supercapacitor. ES Energy Environ 18:101–110

    CAS  Google Scholar 

  144. Wang X, Qi F, Wang Z, Zhang Z, Li Q, Wu J, Shi G (2021) Dependence of Al doping on the in-situ reactive preparation and mechanical properties of Ti3SiC2/Al2O3 composites. ES Mater Manuf 15:85–95

  145. Thulimilli P (2021) Effect of calcination temperature on photoluminescence intensity of sol-gel prepared Sr2CeO4: Eu3+ nano phosphor. ES Mater Manuf 14:73–78

    Google Scholar 

  146. Kawade AN, Bhujbal PK, Supekar AT, Sonawane KM, Pathan HM, Shaikh SF, Al-Kaitani AA (2021) Comparative study of eosin-y and rose bengal sensitized SnO2-ZnO composite electrode for dye-sensitized solar cell. ES Energy Environ 14:73–78

    CAS  Google Scholar 

  147. Li S, Fan J, Li S, Jin H, Luo W, Ma Y, Wu J, Chao Z, Naik N, Pan D, Guo Z (2022) Synthesis of three dimensional Mo-doped nickel sulfide mesoporous nanostructures/Ni foam composite for supercapacitor and overall water splitting. ES Energy Environ 16:15–25

    CAS  Google Scholar 

  148. Prabhu NN, Chandra RBJ, Rajendra BV, George G, Mourad A-HI, Shivamurthy B (2022) Electrospun ZnO nanofiber based resistive gas/vapor sensors -a review. Eng Sci 19:59–82

    CAS  Google Scholar 

  149. Li J, Zhou D, Liu W-F, Su J-Z, Fu M-S (2019) Novel and facile reduced graphene oxide anchored Ni-Co-Zn-Nd-ferrites composites for microwave absorption. Scripta Mater 171:42–46

    CAS  Google Scholar 

  150. Chandane P, Jadhav U (2021) A simple colorimetric detection of malathion using peroxidase like activity of Fe3O4 magnetic nanoparticles. ES Food & Agroforestry 3:31–36

    CAS  Google Scholar 

  151. Kuchi R, Dongquoc V, Surabhi S, Kim D, Yoon S-G, Park S-Y, Choi J, Jeong J-R (2018) Porous Fe3O4 nanospheres with controlled porosity for enhanced electromagnetic wave absorption. Phys Status Solidi A 215:1701032

    Google Scholar 

  152. Sun D, Zou Q, Wang Y, Wang Y, Jiang W, Li F (2014) Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6:6557–6562

    CAS  Google Scholar 

  153. Peng Z, Jiang Q, Peng P, Li F-F (2020) NH3-activated fullerene derivative hierarchical microstructures to porous Fe3O4/N-C for oxygen reduction reaction and Zn-air battery. Eng Sci 14:27–38

    Google Scholar 

  154. Kuchi R, Nguyen HM, Dongquoc V, Van PC, Surabhi S, Yoon S-G, Kim D, Jeong J-R (2018) In-situ Co-arc discharge synthesis of Fe3O4/SWCNT composites for highly effective microwave absorption. Phys Status Solidi A 215:1700989

    Google Scholar 

  155. Wang W, Zheng M, Ren J, Ma M, Yin X, Li T, Ma Y (2022) Fabrication of magnetic Fe3O4/MnO2/TiO2/polypyrrole heterostructure for efficient adsorption of Mn7+ from aqueous solution. J Appl Polym Sci 139:52199

    CAS  Google Scholar 

  156. Ren J, Wang C, Ding J, Li T, Ma Y (2022) Magnetic core–shell Fe3O4@polypyrrole@4-vinylpyridine composites for the removal of multiple dyes. ACS Appl Polym Mater 4:9449–9462

    CAS  Google Scholar 

  157. Wang W, Ren J, Wang C, Zheng M, Ma Y, Yin X, Ding J, Hou C, Li T (2022) Magnetic Fe3O4/polypyrrole-salicylaldehyde composite for efficient removal of Mn (VII) from aqueous solution by double-layer adsorption. J Appl Polym Sci 139:e52515

    CAS  Google Scholar 

  158. Ma Y, Hou C, Zhang H, Zhang Q, Liu H, Wu S, Guo Z (2019) Three-dimensional core-shell Fe3O4/polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes. Electrochim Acta 315:114–123

    CAS  Google Scholar 

  159. Zheng M, Wei Y, Ren J, Dai B, Luo W, Ma M, Li T, Ma Y (2021) 2-aminopyridine functionalized magnetic core-shell Fe3O4@polypyrrole composite for removal of Mn (VII) from aqueous solution by double-layer adsorption. Sep Purif Technol 277:119455

    CAS  Google Scholar 

  160. Kowshik S, Sharma S, Shettar M, Hiremath P, Upadhyaya A (2022) Investigation on the effects of uncarbonised, carbonised and hybrid eggshell filler addition on the mechanical properties of glass fibre/polyester composites. Eng Sci 18:121–131

  161. Kuchi R, Dongquoc V, Cao Van P, Kim D, Jeong J-R (2021) Synthesis of porous Fe3O4-SnO2 core-void-shell nanocomposites as high-performance microwave absorbers. J Environ Chem Eng 9:106585

  162. Wu Z, Pei K, Xing L, Yu X, You W, Che R (2019) Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv Func Mater 29:1901448

    Google Scholar 

  163. Liu L, He N, Wu T, Hu P, Tong G (2019) Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem Eng J 355:103–108

    CAS  Google Scholar 

  164. Wang S, Yu H, Yu J (2019) Robust adaptive tracking control for servo mechanisms with continuous friction compensation. Control Eng Pract 87:76–82

    Google Scholar 

  165. Luo W, Wei Y, Zhuang Z, Lin Z, Li X, Hou C, Li T, Ma Y (2022) Fabrication of Ti3C2Tx MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors. Electrochim Acta 406:139871

    CAS  Google Scholar 

  166. Luo W, Ma Y, Li T, Thabet HK, Hou C, Ibrahim MM, El-Bahy SM, Xu BB, Guo Z (2022) Overview of MXene/conducting polymer composites for supercapacitors. J Energy Storage 52:105008

  167. Li X, Ren J, Sridhar D, Algadi H, Xu BB, El-Bahy ZM, Ma Y, Li T, Guo Z (2023) Progress of layered double hydroxides-based materials for supercapacitors. Mater Chem Front 7:1520–1561

    CAS  Google Scholar 

  168. Luo W, Sun Y, Han Y, Ding J, Li T, Hou C, Ma Y (2023) Flexible Ti3C2Tx MXene/polypyrrole composite films for high-performance all-solid asymmetric supercapacitors. Electrochim Acta 441:141818

    CAS  Google Scholar 

  169. Luo W, Sun Y, Lin Z, Li X, Han Y, Ding J, Li T, Hou C, Ma Y (2023) Flexible Ti3C2Tx MXene/V2O5 composite films for high-performance all-solid supercapacitors. J Energy Storage 62:106807

  170. Shah DK, Kc D, Kim T-G, Akhtar MS, Kim CY, Yang OB (2021) In-search of efficient antireflection coating layer for crystalline silicon solar cells: optimization of the thickness of Nb2O5 thin layer. Eng Sci 18:243–252

    Google Scholar 

  171. Sun Y, Wu B, Shi K, Shi Z, Wu X (2022) Volume-confined hyperbolic polaritons and surface-confined hyperbolic polaritons in ultrathin hyperbolic sheets and their identification. Eng Sci 20:157–161

    Google Scholar 

  172. Ding D, Wang Y, Li X, Qiang R, Xu P, Chu W, Han X, Du Y (2017) Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111:722–732

    CAS  Google Scholar 

  173. Wang F, Wang N, Han X, Liu D, Wang Y, Cui L, Xu P, Du Y (2019) Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145:701–711

    CAS  Google Scholar 

  174. Zhuang Z, Wang W, Wei Y, Li T, Ma M, Ma Y (2021) Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances. Adv Compos Mater 4:938–945

    CAS  Google Scholar 

  175. Wei Y, Zheng M, Luo W, Dai B, Ren J, Ma M, Li T, Ma Y (2022) All pseudocapacitive MXene-MnO2 flexible asymmetric supercapacitor. J Energy Storage 45:103715

  176. Zhou C, Wu C, Yan M (2019) A versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption. Chem Eng J 370:988–996

    CAS  Google Scholar 

  177. Gou G, Meng F, Wang H, Jiang M, Wei W, Zhou Z (2019) Wheat straw-derived magnetic carbon foams: in-situ preparation and tunable high-performance microwave absorption. Nano Res 12:1423–1429

    CAS  Google Scholar 

  178. Ganesh CJ, Vijay GS, Bekinal SI (2022) Modelling of interior permanent magnet motor and optimization of its torque ripple and cogging torque based on design of experiments and artificial neural networks. Eng Sci 18:193–203

  179. Lei G (2003) Maxwell-Garnett type approximation for nonlinear composites with shape distribution. Phys Lett A 309:435–442

    Google Scholar 

  180. Sauty C, Meliani Z, Lima J, Tsinganos K, Cayatte V, Globus N (2011) Nonradial and nonpolytropic astrophysical outflows IX. Modeling T Tauri jets with a low mass-accretion rate. arXiv 533:A46

    Google Scholar 

  181. Vyas S, Shukla A, Shivhare SJ, Bagal VS, Upadhyay N (2021) High performance conducting nanocomposites polyaniline (PANI)-CuO with enhanced antimicrobial activity for biomedical applications. ES Mater Manuf 15:46–52

    Google Scholar 

  182. Wang L, Huang Y, Sun X, Huang H, Liu P, Zong M, Wang Y (2014) Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6:3157–3164

    CAS  Google Scholar 

  183. Ahmed R, Wang S, Rehman SU, Sun J, Wang J, Si R, Zhu A, Yu Y, Li Q, Wang C (2021) Maxwell-Wagner Relaxation in Ca-, Sm- and Nd-doped ceria. Eng Sci 15:95–104

  184. Zhang N, Huang Y, Wang M (2018) Synthesis of graphene/thorns-like polyaniline/alpha-Fe2O3@SiO2 nanocomposites for lightweight and highly efficient electromagnetic wave absorber. J Colloid Interface Sci 530:212–222

    CAS  Google Scholar 

  185. Hu X, Yu JC (2008) Continuous aspect-ratio tuning and fine shape control of monodisperseα-Fe2O3 nanocrystals by a programmed microwave-hydrothermal method. Adv Func Mater 18:880–887

    CAS  Google Scholar 

  186. Zelenev A, Matijevic E (2006) Surfactant-induced detachment of monodispersed hematite particles adhered on glass. J Colloid Interface Sci 299:22–27

    CAS  Google Scholar 

  187. Hamada S, Matijevi E (1981) Ferric hydrous oxide sols. IV. Preparation of uniform cubic hematite particles by hydrolysis of ferric chloride in alcohol-water solutions. J Colloid Interface Sci 84:274–277

  188. Jia CJ, Sun LD, Yan ZG, You LP, Luo F, Han XD, Pang YC, Zhang Z, Yan CH (2005) Single-crystalline iron oxide nanotubes. Angew Chem Int Ed 44:4328–4333

    CAS  Google Scholar 

  189. Gou X, Wang G, Kong X, Wexler D, Horvat J, Yang J, Park J (2008) Flutelike porous hematite nanorods and branched nanostructures: synthesis, characterisation and application for gas-sensing. Chem 14:5996–6002

    CAS  Google Scholar 

  190. Jagadeesan D, Mansoori U, Mandal P, Sundaresan A, Eswaramoorthy M (2008) Hollow spheres to nanocups: tuning the morphology and magnetic properties of single-crystalline alpha-Fe2O3 nanostructures. Angew Chem Int Ed 47:7685–7688

    CAS  Google Scholar 

  191. Jiao AHF, Jumas JC, Chadwick AV, Kockelmann W, Bruce PG, Am J (2006) Ordered mesoporous Fe2O3 with crystalline walls. J Am Chem Soc 128:5468–5474

  192. Serna CJ, Morales MP (2004) Maghemite (γ-Fe2O3): a versatile magnetic colloidal material. Surf Colloid Sci 17:27–81

    CAS  Google Scholar 

  193. Li Q, Zhang Z, Qi L, Liao Q, Kang Z, Zhang Y (2019) Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv Sci 6:1801057

    Google Scholar 

  194. Song Q, Ye F, Yin X, Li W, Li H, Liu Y, Li K, Xie K, Li X, Fu Q, Cheng L, Zhang L, Wei B (2017) Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv Mater 29:1701583

    Google Scholar 

  195. Che RC, Peng LM, Duan XF, Chen Q, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16:401–405

    CAS  Google Scholar 

  196. Wu G, Jia Z, Zhou X, Nie G, Lv H (2020) Interlayer controllable of hierarchical MWCNTs@C@FexOy cross-linked composite with wideband electromagnetic absorption performance. Compos A Appl Sci Manuf 128:105687

    CAS  Google Scholar 

  197. Liu X, Cui X, Chen Y, Zhang X-J, Yu R, Wang G-S, Ma H (2015) Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles–poly(vinylidene fluoride) composites. Carbon 95:870–878

    CAS  Google Scholar 

  198. Bertram BD, Gerhardt RA (2011) Effects of frequency, percolation, and axisymmetric microstructure on the electrical response of hot-pressed alumina-silicon carbide whisker composites. J Am Ceram Soc 94:1125–1132

    CAS  Google Scholar 

  199. Liu P, Gao S, Huang W, Ren J, Yu D, He W (2020) Hybrid zeolite imidazolate framework derived N-implanted carbon polyhedrons with tunable heterogeneous interfaces for strong wideband microwave attenuation. Carbon 159:83–93

    CAS  Google Scholar 

  200. Zhang X, Ji G, Liu W, Quan B, Liang X, Shang C, Cheng Y, Du Y (2015) Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 7:12932–12942

    CAS  Google Scholar 

  201. Watts P, Hsu WK, Barnes A, Chambers B (2003) High permittivity from defective multiwalled carbon nanotubes in the X-band. Adv Mater 15:600–603

    CAS  Google Scholar 

  202. Gerber R, Wright CD, Asti G (1994) Applied magnetism. Springer, Netherlands 121:240

    Google Scholar 

  203. Kuchi R, Sharma M, Lee SW, Kim D, Jung N, Jeong J-R (2019) Rational design of carbon shell-encapsulated cobalt nanospheres to enhance microwave absorption performance. Prog Nat Sci Mater Int 29:88–93

    CAS  Google Scholar 

  204. Rehman SU, Ahmed R, Ma K, Xu S, Tao T, Aslam MA, Amir M, Wang J (2020) Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng Sci 13:71–78

  205. Rehman SU, Liu J, Fang Z, Wang J, Ahmed R, Wang C, Bi H (2020) Heterostructured TiO2/C/Co from ZIF-67 frameworks for microwave-absorbing nanomaterials. ACS Appl Nano Mater 2:4451–4461

  206. Kumar R, Umar A, Kumar R, Chauhan MS, Kumar G, Chauhan S (2021) Spindle-like Co3O4-ZnO nanocomposites scaffold for hydrazine sensing and photocatalytic degradation of rhodamine B dye. Eng Sci 16:288–300

    CAS  Google Scholar 

  207. Hassan A, Aslam MA, Bilal M, Khan MS, Rehman SU, Ma K, Wang J, Sheng Z (2021) Modulating dielectric loss of MoS2@Ti3C2Tx nanoarchitectures for electromagnetic wave absorption with radar cross section reduction performance verified through simulations. Ceram Int 47:20706–20716

  208. Zhao B, Zhao W, Shao G, Fan B, Zhang R (2015) Morphology-control synthesis of a core-shell structured NiCu Alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl Mater Interfaces 7:12951–12960

    CAS  Google Scholar 

  209. Kuchi R, Latif T, Lee SW, Dongquoc V, Cao Van P, Kim D, Jeong JR (2020) Controlling the electric permittivity of honeycomb-like core-shell Ni/CuSiO3 composite nanospheres to enhance microwave absorption properties. RSC Adv 10:1172–1180

  210. Srinivasan G, Seehra MS (1984) Magnetic susceptibilities, their temperature variation, and exchange constants of NiO. Phys Rev B 29:6295–6298

    CAS  Google Scholar 

  211. Liang J, Shen H, Kong J (2021) Steel mesh reinforced Ni(OH)2 nanosheets with enhanced oxygen evolution reaction performance. ES Mater Manuf 14:79–86

    CAS  Google Scholar 

  212. Kodama RH, Makhlouf SA, Berkowitz AE (1997) Finite size effects in antiferromagnetic NiO nanoparticles. Phys Rev Lett 79:1393–1396

    CAS  Google Scholar 

  213. Winkler E, Zysler RD, Mansilla MV, Fiorani D (2005) Surface anisotropy effects in NiO nanoparticles. Phys Rev B 72:132409

    Google Scholar 

  214. Jagodič M, JagličIć Z, Jelen A, Lee JB, Kim YM, Kim HJ, DolinšEk J (2009) Surface-spin magnetism of antiferromagnetic NiO in nanoparticle and bulk morphology. J Phys Condens 21:215302

  215. Zhao B, Liang L, Bai Z, Guo X, Zhang R, Jiang Q, Guo Z (2021) Poly(vinylidene fluoride)/Cu@Ni anchored reduced-graphene oxide composite films with folding movement to boost microwave absorption properties. ES Energy Environ 14:79–86

    CAS  Google Scholar 

  216. Uddin W, Rehman SU, Aslam MA, Rehman M, Wu M, Zhu M (2020) Enhanced microwave absorption from the magnetic-dielectric interface: a hybrid rGO@Ni-doped-MoS2. Mater Res Bull 130:110943

  217. Lan D, Qin M, Liu J, Wu G, Zhang Y, Wu H (2020) Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem Eng J 382:122797

    CAS  Google Scholar 

  218. Fan T, Deng W, Gang Y, Du Z, Li Y (2021) Degradation of hazardous organics via cathodic flow-through process using a spinel FeCo2O4/CNT decorated stainless-steel mesh. ES Mater Manuf 12:53–62

    CAS  Google Scholar 

  219. Moitra D, Hazra S, Ghosh BK, Jani RK, Patra MK, Vadera SR, Ghosh NN (2015) A facile low temperature method for the synthesis of CoFe2O4 nanoparticles possessing excellent microwave absorption properties. RSC Adv 5:51130–51134

    CAS  Google Scholar 

  220. Zhang S, Jiao Q, Zhao Y, Li H, Wu Q (2014) Preparation of rugby-shaped CoFe2O4 particles and their microwave absorbing properties. J Mater Chem A 2:18033–18039

    CAS  Google Scholar 

  221. Jalalian M, Mirkazemi SM, Alamolhoda S (2016) Phase constituents and magnetic properties of the CoFe2O4 nanoparticles prepared by polyvinylpyrrolidone (PVP)-assisted hydrothermal route. Appl Phys A 122:835

    Google Scholar 

  222. Kakade PM, Kachere AR, Mandlik NT, Rondiya SR, Jadkar SR, Bhosale SV (2020) Graphene Oxide assisted synthesis of magnesium oxide nanorods. ES Mater Manuf 12:63–71

    Google Scholar 

  223. Xie P, Shi Z, Feng M, Sun K, Liu Y, Yan K, Liu C, Moussa TAA, Huang M, Meng S, Liang G, Hou H, Fan R, Guo Z (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Mater 5:679–695

    Google Scholar 

  224. Xie P, Sun W, Liu Y, Du A, Zhang Z, Wu G, Fan R (2018) Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129:598–606

    CAS  Google Scholar 

  225. Xie P, Wang Z, Zhang Z, Fan R, Cheng C, Liu H, Liu Y, Li T, Yan C, Wang N, Guo Z (2018) Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. J Mater Chem 6:5239–5249

    CAS  Google Scholar 

  226. Yadav RS, Kuřitka I, Vilcakova J, Skoda D, Urbánek P, Machovsky M, Masař M, Kalina L, Havlica J (2019) Lightweight NiFe2O4-reduced graphene oxide-elastomer nanocomposite flexible sheet for electromagnetic interference shielding application. Compos B Eng 166:95–111

    CAS  Google Scholar 

  227. Rehman SU, Wang J, Luo Q, Sun M, Jiang L, Han Q, Liu L, Bi H (2019) Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem Eng J 373:122–130

  228. Lokh PE, Kadam V, Jagatap C, Chavan US, Udayabhaskar R, Pathan HM (2022) Hierarchical ultrathin nanosheet of Ni(OH)2/rGO composite chemically deposited on Ni foam for NOx gas sensors. ES Mater Manuf 17:53–56

  229. Deokate RJ (2020) Chemically deposited NiCo2O4 thin films for electrochemical study. ES Mater Manuf 11:16–19

    Google Scholar 

  230. Mohamed Z, Zhang G, He B, Fan Y (2021) Heterostructure necklace-like NiO-NiCo2O4 hybrid with superior catalytic capability as electrocatalyst for Li-O2 batteries. Eng Sci 17:231–241

  231. Rahane GK, Jathar SB, Rondiya SR, Jadhav YA, Barma SV, Rokade A, Cross RW, Nasane MP, Jadkar V, Dzade NY, Jadkar SR (2020) Photoelectrochemical Investigation on the cadmium sulfide (CdS) thin films prepared using spin coating technique. ES Mater Manuf 11:57–64

    Google Scholar 

  232. Sarkar T, Salauddin M, Hazra SK, Chakraborty R (2020) Comparative classification efficiency of self-organizing map, principal component analysis, and hierarchical cluster analysis for normal dairy and differently pineapple fortified rasgulla. ES Food & Agroforestry 1:94–105

    Google Scholar 

Download references

Acknowledgements

The author gratitude the environmental and function material team, supported by the Project of Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation.

Funding

Natural Science Foundation of Shandong,ZR2019BB063

Author information

Authors and Affiliations

Authors

Contributions

Haowen Wang: data curation, writing—original draft.; Hao Zhang: data curation.; Kangze Zhao, Aolin Nie: writing—review and editing.; Sarah Alharthi: methodology.; Mohammed A. Amin: methodology, review and editing, project administration.; Zeinhom M. El-Bahy: writing—review and editing, project administration.; Handong Li: conceptualization, data curation.; Long Chen: writing—original draft, methodology.; Ben Bin Xu: conceptualization, supervision, project administration, writing—review and editing.; Yong Ma: conceptualization, supervision, project administration, writing—review and editing.; Tingxi Li: supervision, project administration, writing—review and editing.

Corresponding authors

Correspondence to Long Chen, Ben Bin Xu, Yong Ma or Tingxi Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, H., Zhao, K. et al. Research progress on electromagnetic wave absorption based on magnetic metal oxides and their composites. Adv Compos Hybrid Mater 6, 120 (2023). https://doi.org/10.1007/s42114-023-00694-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00694-5

Keywords

Navigation