Skip to main content
Log in

Highly Sensitive Plasmonic Temperature Sensor Based on Photonic Crystal Surface Plasmon Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a highly sensitive temperature sensor based on photonic crystal surface plasmon waveguides comprising different plasmonic active metals such as gold, silver, and aluminum, utilizing surface plasmon resonance phenomenon. We found that the resonance wavelength can be easily and substantially tuned over a broad spectral range by changing the temperature and also by judiciously choosing the different plasmonic metals. Employing coupled mode theory, we found that the proposed sensor can be used in harsh environment with sensitivity as high as ∼70 pm/K around telecommunication window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee B (2003) Review of the present status of optical fiber sensors. Opt Fiber Technol 9(2):57–79

    Article  CAS  Google Scholar 

  2. Remouche M, Mokdad R, Chakari A, Meyrueis P (2007) Intrinsic integrated optical temperature sensor based on waveguide bend loss. Optics & Laser Technology 39:1454–1460

    Article  Google Scholar 

  3. Chomát M, Čtyroký J, Berková D, Matějec V, Kaňka J, Skokánková J, Todorov F, Jančárek A, Bittner P (2006) Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding. Sensor and Actuator B Chem 119(2):642–650

    Article  Google Scholar 

  4. Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens J 7(8):1118–1129

    Article  Google Scholar 

  5. Choi HY, Park KS, Park SJ, Paek UC, Lee BH, Choi ES (2008) Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer. Opt Lett 33:2455–2457

    Article  Google Scholar 

  6. Jha R, Villatoro J, Badenes G, Pruneri V (2009) Refractometery based on photonic crystal fiber modal interferometer. Opt Lett 34:617–619

    Article  Google Scholar 

  7. Homola J, Čtyroký J, Skalsky M, Hradilova J, Kolarova P (1997) A surface plasmon resonance based integrated optical sensor. Sensors Actuator B Chem 38–39:286–290

    Article  Google Scholar 

  8. Srivastava T, Das R, Jha R (2010) Design consideration and propagation characteristic of channel Bragg plasmon coupled waveguide. Appl Phys Lett 97:213104–3

    Article  Google Scholar 

  9. Dostalek J, Ctyroky J, Himola J, Brynda E, Skalsky M, Nekvindova P, Spirkova J, Skvor J, Schrofel J (2001) Surface plasmon resonance biosensor based on integrated optical waveguide. Sens Actuators B 76:8

    Article  CAS  Google Scholar 

  10. West BR, Helmy AS (2006) Properties of the quarter-wave Bragg reflection waveguide: theory. J Opt Soc Am B 23:1207

    Article  CAS  Google Scholar 

  11. Srivastava T, Jha R, Das R (2011) High performance bimetallic SPR sensor based on periodic multilayer waveguide. IEEE Photon Tech Lett 23:1448

    Article  CAS  Google Scholar 

  12. Srivastava T, Das R, Jha R (2011) Highly accurate and sensitive surface plasmon resonance sensor based on channel photonic crystal waveguide. Sensors and Actuator B 157:246

    Article  CAS  Google Scholar 

  13. Toyoda T, Yabe M (1983) The temperature dependence of the refractive indices of SrTiO3 and TiO2. J Phys D: Appl Phys 16:L251–L255

    Article  CAS  Google Scholar 

  14. Ghosh G, Endo M, Iwasaki T (1994) Temperature dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses. Journ Lightwave Technol 12(8):1338–1342

    Article  CAS  Google Scholar 

  15. Sharma AK, Pattanaik HS, Mohr GJ (2009) On temperature sensing capability of a fibre optic SPR mechanism based on bimetallic alloy nanoparticles. J Phys D: Appl Phys 42:045104

    Article  Google Scholar 

  16. Chiang HP, Leung PT, Tse WS (1998) The surface plasmon enhancement effect on absorbed molecules at elevated temperatures. J Chem Phys 108:2659–2660

    Article  CAS  Google Scholar 

  17. Holstein T (1954) Optical and infrared volume absorptivity of metals. Phys Rev 96:535–536

    Article  CAS  Google Scholar 

  18. Lawrence WE (1976) Electron–electron scattering in the low temperature resistivity of the noble metals. Phys Rev B 13:5316–5319

    Article  CAS  Google Scholar 

  19. Schiebener P, Straub J, Levelt Sengers JMH, Gallaghen JS (1990) Refractive index of water and steam as function of wavelength, temperature and density. J Phys Chem Ref Data 19:677–717

    Article  CAS  Google Scholar 

  20. Yariv A (1973) Coupled-mode theory for guided-wave optics. J Quant Electron QE-9(9):919–933

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Jha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, T., Das, R. & Jha, R. Highly Sensitive Plasmonic Temperature Sensor Based on Photonic Crystal Surface Plasmon Waveguide. Plasmonics 8, 515–521 (2013). https://doi.org/10.1007/s11468-012-9421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9421-x

Keywords

Navigation