Skip to main content
Log in

An investigation of fractional complex Ginzburg–Landau equation with Kerr law nonlinearity in the sense of conformable, beta and M-truncated derivatives

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Complex Ginzburg–Landau equation is widely used for investigating superconductivity, strings in field theory, non-linear dynamics of fibre lasers and ultra fast optics. In this paper, dark, bright, complexiton, singular and periodic optical solitons of fractional order complex Ginzburg–Landau equation have been retrieved with Kerr law nonlinearity. Abundant traveling wave solutions consisting of hyperbolic, trigonometric, exponential and rational function solutions are constructed. Exact solutions of the considered model have been extracted by using improved \(\tan \left( \frac{\psi (\zeta )}{2}\right)\)-expansion technique. A comparative study among the solutions has been exercised by implementing conformable, beta and M-truncated derivatives. Furthermore, graphical illustration of the comparison of the results obtained by the three derivatives has been reported as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

Not applicable.

Code availability

The computations involved in the work are done with the help of Maple and Mathematica.

References

  • Abdel-Gawad, H.I., Osman, M.S.: On the variational approach for analyzing the stability of solutions of evolution equations. Kyungpook Math. J. 53(4), 661–680 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Abdel-Gawad, H.I., Osman, M.: On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients. J. Adv. Res. 6(4), 593–599 (2015)

    Article  Google Scholar 

  • Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Akbar, M.A., Kayum, M.A., Osman, M.S.: Bright, periodic, compacton and bell-shape soliton solutions of the extended QZK and (3+ 1)-dimensional ZK equations. Commun. Theor. Phys. 73(10), 105003 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Akram, G., Sadaf, M., Dawood, M.: Kink, periodic, dark and bright soliton solutions of Kudryashov-Sinelshchikov equation using the improved \(\tan (\frac{\phi (\eta )}{2})\)-expansion technique. Opt. Quantum Electron. 53, 480 (2021)

    Article  Google Scholar 

  • Akram, G., Sadaf, M., Sarfraz, M., Anum, N.: Dynamics investigation of \((1+ 1)\)-dimensional time-fractional potential Korteweg-de Vries equation. Alex. Eng. J. 61(1), 501–509 (2022)

  • Ali, K.K., Yilmazer, R., Bulut, H., Aktürk, T., Osman, M.S.: Abundant exact solutions to the strain wave equation in micro-structured solids. Mod. Phys. Lett. B 35(26), 2150439 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Almusawa, H., Ali, K.K., Wazwaz, A.M., Mehanna, M.S., Baleanu, D., Osman, M.S.: Protracted study on a real physical phenomenon generated by media inhomogeneities. Results Phys. 31, 104933 (2021)

    Article  Google Scholar 

  • Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74(1), 99 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Arshed, S.: Soliton solutions of fractional complex Ginzburg-Landau equation with Kerr law and non-Kerr law media. Optik: Int. J. Light Electron Opt. 160, 322–332 (2018)

    Article  Google Scholar 

  • Atangana, A., Alkahtani, B.S.T.: Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter. Beta-derivative 21(6), 442–451 (2015)

    MathSciNet  Google Scholar 

  • Bakodah, H., Al Qarni, A.A., Banaja, M.A., Zhou, Q., Moshokoa, S.P., Biswas, A.: Bright and dark thirring optical solitons with improved adomian decomposition method. Optik: Int. J. Light Electron Opt. 130, 1115–1123 (2017)

    Article  Google Scholar 

  • Baskonus, H.M., Osman, M.S., Rehman, M., Ramzan, H.U., Tahir, M., Ashraf, S.: On pulse propagation of soliton wave solutions related to the perturbed Chen-Lee-Liu equation in an optical fiber. Opt. Quantum Electron. 53(10), 556 (2021)

    Article  Google Scholar 

  • Biswas, A.: 1-Soliton solution of the generalized Radhakrishnan, Kundu Lakshmanan equation. Phys. Lett. A 373(30), 2546–2548 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Biswas, A.: Temporal 1-soliton solution of the complex Ginzburg-Landau equation with power law nonlinearity. Prog. Electromagn. Res. 96, 1–7 (2009)

    Article  Google Scholar 

  • Biswas, A., Arshed, S.: Optical solitons in presence of higher order dispersions and absence of self-phase modulation. Optik: Int. J. Light Electron Opt. 174, 452–459 (2018)

    Article  Google Scholar 

  • Biswas, A., Milovic, D., Kohl, R.: Optical soliton perturbation in a log-law medium with full nonlinearity by He’s semi-inverse variational principle. Inverse Probl. Sci. Eng. 20(2), 227–232 (2012)

    Article  MATH  Google Scholar 

  • Biswas, A., Mirzazadeh, M., Eslami, M., Zhou, Q., Bhrawy, A., Belic, M.: Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method. Optik: Int. J. Light Electron Opt. 127(18), 7250–7257 (2016)

    Article  Google Scholar 

  • Chang, W., Akhmediev, N., Wabnitz, S., Taki, M.: Influence of external phase and gain-loss modulation on bound solitons in laser systems. J. Opt. Soc. Am. B 26(11), 2204–2210 (2009)

    Article  ADS  Google Scholar 

  • Ekici, M., Zhou, Q., Sonmezoglu, A., Moshokoa, S.P., Ullah, M.Z., Biswas, A., Belic, M.: Solitons in magneto-optic waveguides by extended trial function scheme. Superlattices Microstruct. 107, 197–218 (2017)

    Article  ADS  Google Scholar 

  • Faraz, N., Sadaf, M., Akram, G., Zainab, I., Khan, Y.: Effects of fractional order time derivative on the solitary wave dynamics of the generalized ZK-Burgers equation. Results Phys. 25, 104217 (2021)

    Article  Google Scholar 

  • Hussain, A., Jhangeer, A., Abbas, N., Khan, I., Sherif, E.S.M.: Optical solitons of fractional complex Ginzburg-Landau equation with conformable, beta, and M-truncated derivatives: a comparative study. Adv. Differ. Equ. 2020(1), 1–19 (2020)

    Article  MathSciNet  Google Scholar 

  • Ismael, H.F., Atas, S.S., Bulut, H., Osman, M.S.: Analytical solutions to the M-derivative resonant Davey-Stewartson equations. Mod. Phys. Lett. B 35(30), 2150455 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, L., Jin, L., Fang, S.: Large time behavior for the fractional Ginzburg-Landau equations near the BCS-BEC crossover regime of Fermi gases. Bound. Value Probl. 2017(1), 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, X., Triki, H., Zhou, Q., Liu, W., Biswas, A.: Analytic study on interactions between periodic solitons with controllable parameters. Nonlinear Dyn. 94(1), 703–709 (2018)

    Article  Google Scholar 

  • Liu, S., Zhou, Q., Biswas, A., Liu, W.: Phase-shift controlling of three solitons in dispersion-decreasing fibers. Nonlinear Dyn. 98(1), 395–401 (2019)

    Article  MATH  Google Scholar 

  • Lu, H., Bates, P.W., Lü, S., Zhang, M.: Dynamics of the \(3-d\) fractional complex Ginzburg-Landau equation. J. Differ. Equ. 259(10), 5276–5301 (2015)

  • Manafian, J., Foroutan, M.: Application of tan (phi/2)-expansion method for the time-fractional Kuramoto-Sivashinsky equation. Opt. Quantum Electron. 49(8), 1–18 (2017)

    Article  Google Scholar 

  • Manafian, J., Lakestani, M.: New improvement of the expansion methods for solving the generalized Fitzhugh-Nagumo equation with time-dependent coefficients. Int. J. Eng. Math. 2015, 107978 (2015)

    Article  MATH  Google Scholar 

  • Manafian, J., Lakestani, M., Bekir, A.: Study of the analytical treatment of the (2+ 1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach. Int. J. Appl. Comput. Math. 2(2), 243–268 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Mihalache, D.: Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature. Rom. Rep. Phys. 69(1), 403 (2017)

    Google Scholar 

  • Milovanov, A.V., Rasmussen, J.J.: Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex media. Phys. Lett. A 337(1–2), 75–80 (2005)

    Article  ADS  MATH  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Sonmezoglu, A., Eslami, M., Zhou, Q., Kara, A.H., Milovic, D., Majid, F.B., Biswas, A., Belić, M.: Optical solitons with complex Ginzburg-Landau equation. Nonlinear Dyn. 85(3), 1979–2016 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Osman, M.S.: On multi-soliton solutions for the (2+ 1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide. Comput. Math. Appl. 75(1), 1–6 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Osman, M.S., Abdel-Gawad, H.I.: Multi-wave solutions of the (2+ 1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients. Eur. Phys. J. Plus 130(10), 215 (2015)

    Article  Google Scholar 

  • Osman, M.S., Machado, J.A.T.: New nonautonomous combined multi-wave solutions for \((2+ 1)\)-dimensional variable coefficients KdV equation. Nonlinear Dyn. 93(2), 733–740 (2018)

  • Osman, M.S., Abdel-Gawad, H.I., El Mahdy, M.A.: Two-layer-atmospheric blocking in a medium with high nonlinearity and lateral dispersion. Results Phys. 8, 1054–1060 (2018)

    Article  ADS  Google Scholar 

  • Osman, M.S., Liu, J.G., Hosseini, K., Yusuf, A.: Different wave structures and stability analysis for the generalized \((2+ 1)\)-dimensional Camassa-Holm-Kadomtsev-Petviashvili equation. Phys. Scr. 95(3), 035229 (2020)

  • Özkan, Y.S., Yaşar, E.: On the exact solutions of nonlinear evolution equations by the improved tan (phi/2)-expansion method. Pramana J. Phys. 94, 37 (2020)

    Article  ADS  Google Scholar 

  • Pu, X., Guo, B.: Well-posedness and dynamics for the fractional Ginzburg-Landau equation. Appl. Anal. 92(2), 318–334 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Qiu, Y., Malomed, B.A., Mihalache, D., Zhu, X., Zhang, L., He, Y.: Soliton dynamics in a fractional complex Ginzburg-Landau model. Chaos Solitons Fract. 131, 109471 (2020)

    Article  MathSciNet  Google Scholar 

  • Renninger, W.H., Chong, A., Wise, F.W.: Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A 77(2), 023814 (2008)

    Article  ADS  Google Scholar 

  • Rezazadeh, H.: New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. Optik: Int. J. Light Electron Opt. 167, 218–227 (2018)

    Article  Google Scholar 

  • Rosanov, N.N.: Spatial Hysteresis and Optical Patterns. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  • Siddique, I., Jaradat, M.M.M., Zafar, A., Mehdi, K.B., Osman, M.S.: Exact traveling wave solutions for two prolific conformable M-Fractional differential equations via three diverse approaches. Results Phys. 28, 104557 (2021)

    Article  Google Scholar 

  • Singh, J., Kumar, D., Baleanu, D.: A new analysis of fractional fish farm model associated with Mittag-Leffler-type kernel. Int. J. Biomath. 13(02), 2050010 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Song, Y.F., Zhang, H., Zhao, L.M., Shen, D.Y., Tang, D.Y.: Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. Opt. Express 24(2), 1814–1822 (2016)

    Article  ADS  Google Scholar 

  • Sousa, J. V. D. C., de Oliveira E. C.: A new truncated \(m\)-fractional derivative type unifying some fractional derivative types with classical properties. arXiv preprint arXiv:1704.08187 (2017)

  • Weitzner, H., Zaslavsky, G.M.: Some applications of fractional equations. Commun. Nonlinear Sci. Numer. Simul. 8(3–4), 273–281 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhou, Q., Inc, M., Liu, L., Zhang, H., Wei, C., Lu, J., Yu, H., Biswas, A.: Analytical study of Thirring optical solitons with parabolic law nonlinearity and spatio-temporal dispersion. Eur. Phys. J. Plus 130(7), 138 (2015)

    Article  Google Scholar 

  • Zhou, Q., Mirzazadeh, M., Zerrad, E., Biswas, A., Belic, M.: Bright, dark, and singular solitons in optical fibers with spatio-temporal dispersion and spatially dependent coefficients. J. Mod. Opt. 63(10), 950–954 (2016)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maasoomah Sadaf.

Ethics declarations

Conflict of interest

The Authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadaf, M., Akram, G. & Dawood, M. An investigation of fractional complex Ginzburg–Landau equation with Kerr law nonlinearity in the sense of conformable, beta and M-truncated derivatives. Opt Quant Electron 54, 248 (2022). https://doi.org/10.1007/s11082-022-03570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03570-6

Keywords

Navigation