Skip to main content
Log in

Dynamical behaviour of Chiral nonlinear Schrödinger equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, we study the exact traveling wave solutions of \((2+1)\)-dimensional Chiral nonlinear Schrödinger equation with the aid of generalized auxiliary equation method. The aforementioned model is used as a governing equation to discuss the wave in quantum field theory. The suggested technique is direct, effective, powerful, and offers constraint conditions to ensure the existence of solutions. The solutions obtained are bright solitons, dark solitons, singular solitons, mixed solitons, periodic waves, exponential, rational, and complex solutions that are relevant in various applications of applied science. Finally, some solutions are depicted in two and three dimensional to better understand the behavior of the considered model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdou, M.A.: A generalized auxiliary equation method and its applications. Nonlinear Dyn. 52(1), 95–102 (2008)

    Article  MathSciNet  Google Scholar 

  • Ablowitz, M.J.: Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  • Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Akinyemi, L., Iyiola, O.S.: Exact and approximate solutions of time-fractional models arising from physics via Shehu transform. Math. Methods Appl. Sci. 43(12), 7442–7464 (2020). https://doi.org/10.1002/mma.6484

    Article  MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., Senol, M., Huseen, S.N.: Modified homotopy methods for generalized fractional perturbed Zakharov–Kuznetsov equation in dusty plasma. Adv. Differ. Eqn. 2021(1), 1–27 (2021a). https://doi.org/10.1186/s13662-020-03208-5

    Article  MathSciNet  Google Scholar 

  • Akinyemi, L., Senol, M., Iyiola, O.S.: Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 182, 211–233 (2021b). https://doi.org/10.1016/j.matcom.2020.10.017

    Article  MathSciNet  MATH  Google Scholar 

  • Alagesan, T., Uthayakumar, A., Porsezian, K.: Painlev analysis and Backlund transformation for a three-dimensional Kadomtsev–Petviashvili equation. Chaos Solitons Fract. 8, 893–895 (1997)

    Article  ADS  Google Scholar 

  • Ali Akbar, M., Akinyemi, L., Yao, S.-W., Jhangeer, A., Rezazadeh, H., Khater, M.M.A., Ahmad, H., Inc, M.: Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Results Phys. 25, 1–10 (2021). https://doi.org/10.1016/j.rinp.2021.104228

    Article  Google Scholar 

  • Az-Zo’bi, E.A., AlZoubi, W.A., Akinyemi, L., et al.: Abundant closed-form solitons for time-fractional integro-differential equation in fluid dynamics. Opt. Quant. Electron. 53, 1–16 (2021). https://doi.org/10.1007/s11082-021-02782-6

    Article  Google Scholar 

  • Bekir, A., Guner, O., Ünsal, Ö., Mirzazadeh, M.: Applications of fractional complex transform and \((G^{\prime }/G)\)-expansion method for time-fractional differential equations. J. Appl. Anal. Comput. 6(1), 131–144 (2016)

    Article  MathSciNet  Google Scholar 

  • Biswas, A., Jawad, A.J.M., Manrakhan, W.N., Sarma, A.K., Khan, K.R.: Optical solitons and complexitons of the Schrödinger–Hirota equation. Opt. Laser Technol. 44(7), 2265–2269 (2012)

    Article  ADS  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Demirdag, B.: Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations. Nonlinear Dyn. 91, 1985–1991 (2018). https://doi.org/10.1007/s11071-017-3997-9

    Article  Google Scholar 

  • Eslami, M.: Trial solution technique to chiral nonlinear Schrödinger’s equation in \((1+2)\)-dimensions. Nonlinear Dyn. 85(2), 813–816 (2016)

    Article  Google Scholar 

  • Fan, E.G., Zhang, Q.H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)

    Article  ADS  Google Scholar 

  • Gao, W., Veeresha, P., Prakasha, D.G., Baskonus, H.M.: New numerical simulation for fractional Benney–Lin equation arising in falling film problems using two novel techniques. Numer. Methods Partial Differ. Eqn. 37(1), 210–243 (2021)

    Article  MathSciNet  Google Scholar 

  • Ghanbari, B., Inc, M., Rada, L.: Solitary wave solutions to the Tzitzeica type equations obtained by a new efficient approach. J. Appl. Anal. Comput. 9(2), 568–589 (2019)

    MathSciNet  MATH  Google Scholar 

  • He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fract. 30(3), 700–708 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. Waves Random Complex Media 27(4), 628–636 (2017). https://doi.org/10.1080/17455030.2017.1296983

    Article  ADS  MathSciNet  Google Scholar 

  • Hosseini, K., Mirzazadeh, M.: Soliton and other solutions to the \((1+2)\)-dimensional chiral nonlinear Schrödinger equation. Commun. Theor. Phys. 72(12), 1–6 (2020)

    Article  Google Scholar 

  • Houwe, A., Yakada, S., Abbagari, S., Saliou, Y., Inc, M., Doka, S.Y.: Survey of third-and fourth-order dispersions including ellipticity angle in birefringent fibers on W-shaped soliton solutions and modulation instability analysis. Eur. Phys. J. Plus 136(4), 1–27 (2021)

    Article  Google Scholar 

  • Khater, M.M., Inc, M., Attia, R.A., Lu, D., Almohsen, B.: Abundant new computational wave solutions of the GM-DP-CH equation via two modified recent computational schemes. J. Taibah Univ. Sci. 14(1), 1554–1562 (2020)

    Article  Google Scholar 

  • Korkmaz, A., Hosseini, K.: Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods. Opt. Quant. Electron. 49(8), 1–10 (2017). https://doi.org/10.1007/s11082-017-1116-2

    Article  Google Scholar 

  • Korpinar, Z., Tchier, F., Inc, M., Bousbahi, F., Tawfiq, F.M., Akinlar, M.A.: Applicability of time conformable derivative to Wick-fractional-stochastic PDEs. Alex. Eng. J. 59(3), 1485–1493 (2020)

    Article  Google Scholar 

  • Ma, H.C., Yu, Y.D., Ge, D.J.: The auxiliary equation method for solving the Zakharov–Kuznetsov (ZK) equation. Comput. Math. Appl. 58(11–12), 2523–2527 (2009)

    Article  MathSciNet  Google Scholar 

  • Malfliet, W., Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54, 563–568 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  • Mirzazadeh, M., Akinyemi, L., Senol, M., Hosseini, K.: A variety of solitons to the sixth-order dispersive \((3+1)\)-dimensional nonlinear time-fractional Schrödinger equation with cubic-quintic-septic nonlinearities. Optik 241, 1–15 (2021). https://doi.org/10.1016/j.ijleo.2021.166318

    Article  Google Scholar 

  • Osman, M.S., Baleanu, D., Tariq, K.U.H., Kaplan, M., Younis, M., Rizvi, S.T.R.: Different types of progressive wave solutions via the 2D-chiral nonlinear Schrödinger equation. Front. Phys. 8, 1–7 (2020). https://doi.org/10.3389/fphy.2020.00215

    Article  Google Scholar 

  • Rasheed, N.M., Al-Amr, M.O., Az-Zo’bi, E.A., Tashtoush, M.A., Akinyemi, L.: Stable optical solitons for the higher-order non-Kerr NLSE via the modified simple equation method. Mathematics 9(16), 1–12 (2021)

    Article  Google Scholar 

  • Raza, N., Javid, A.: Optical dark and dark-singular soliton solutions of \((1+2)\)-dimensional chiral nonlinear Schrodinger’s equation. Waves Random Complex Media 29, 496–508 (2019). https://doi.org/10.1080/17455030.2018.1451009

    Article  ADS  MathSciNet  Google Scholar 

  • Rezazadeh, H., Ullah, N., Akinyemi, L., Shah, A., Mirhosseini-Alizamin, S.M., Chu, Y.M., Ahmad, H.: Optical soliton solutions of the generalized non-autonomous nonlinear Schrödinger equations by the new Kudryashov’s method. Results Phys. 24, 1–7 (2021a). https://doi.org/10.1016/j.rinp.2021.104179

    Article  Google Scholar 

  • Rezazadeh, H., Younis, M., Eslami, M., Bilal, M., Younas, U.: New exact traveling wave solutions to the \((2+1)\)-dimensional Chiral nonlinear Schrödinger equation. Math. Model. Nat. Phenom. 16, 1–15 (2021b). https://doi.org/10.1051/mmnp/2021001

    Article  MATH  Google Scholar 

  • Senol, M.: New analytical solutions of fractional symmetric regularized-long-wave equation. Revista Mexicana de Física 66(3), 297–307 (2020)

    Article  MathSciNet  Google Scholar 

  • Sulem, C., Sulem, P.L.: The nonlinear Schrödinger equation. Springer-Verlag, New York (1999)

    MATH  Google Scholar 

  • Tasbozan, O., Çenesiz, Y., Kurt, A.: New solutions for conformable fractional Boussinesq and combined KdV-mKdV equations using Jacobi elliptic function expansion method. Eur. Phys. J. Plus 131(7), 1–14 (2016)

    Article  Google Scholar 

  • Vahidi, J., Zekavatmand, S.M., Rezazadeh, H., Inc, M., Akinlar, M.A., Chu, Y.M.: New solitary wave solutions to the coupled Maccari’s system. Results Phys. 21, 1–11 (2021). https://doi.org/10.1016/j.rinp.2020.103801

    Article  Google Scholar 

  • Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos Solitons Fract. 17(4), 683–692 (2003)

    Article  ADS  Google Scholar 

  • Yan, Z.: Abundant families of Jacobi elliptic function solutions of the \((2+1)\)-dimensional integrable Davey–Stewartson-type equation via a new method. Chaos Solitons Fract. 18(2), 299–309 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Yang, X.J., Feng, Y.Y., Cattani, C., Inc, M.: Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math. Methods Appl. Sci. 42(11), 4054–4060 (2019)

    Article  MathSciNet  Google Scholar 

  • Zhang, S., Xia, T.: A generalized new auxiliary equation method and its applications to nonlinear partial differential equations. Phys. Lett. A 363(5–6), 356–360 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinyemi, L., Inc, M., Khater, M.M.A. et al. Dynamical behaviour of Chiral nonlinear Schrödinger equation. Opt Quant Electron 54, 191 (2022). https://doi.org/10.1007/s11082-022-03554-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03554-6

Keywords

Navigation