Skip to main content
Log in

The effects of polarization on soliton interactions inside optical fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the effect of linear polarization on Soliton interactions in highly birefringent optical fibers is investigated. It is shown that the interaction between polarized Solitons is quite different from the unpolarized Solitons. The interaction between two polarized Solitons is a function of a variety of parameters including polarization angle, differential group delay and the difference in amplitudes of Solitons. As a result, it is not straightforward to predict the propagation of polarized Solitons alongside the fibers. In this paper, the impacts of different variables on Soliton interactions are explored and the optimization process is performed to minimize the interaction between two polarized Solitons. These investigations help to understand and predict the behavior of polarized Solitons inside birefringent optical fibers. Finally, it is possible to choose the proper parameters to avoid distortion of these polarized Solitons throughout the optical fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelrahman, M.A.E., Ammar, S.I., Abualnaja, K.M., Inc, M.: New solutions for the unstable nonlinear Schrödinger equation arising in natural science. Aims Math. 5(3), 1893–1912 (2020)

    Article  MathSciNet  Google Scholar 

  • Agrawal, G.P.: Chapter 6-optical amplifier. In: Agrawal, G.P. (ed.) Fiber optic communication systems, 3rd edn., pp. 226–278. Academic Press, Boston (2002)

    Chapter  Google Scholar 

  • Agrawal, G.P.: Chapter 5-optical solitons. In: Agrawal, G. (ed.) Nonlinear fiber optics, 5th edn., pp. 129–191. Academic Press, Boston (2013)

    Chapter  Google Scholar 

  • Aslan, E.C., Inc, M.: Soliton solutions of NLSE with quadratic-cubic nonlinearity and stability analysis. Waves Random Complex Media 27(4), 594–601 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Chen, H.-L., Zhang, H., Zhang, H.-W., Zhao, X., Xu, Y.-T., Zou, Y.-G., Ma, X.-H., Jin, L.: 1.6-μm-wavelength dissipative solitons mode-locked fiber laser based on the optimization of passive fibers distribution. Appl. Opt. 57, 7070–7075 (2018)

    Article  ADS  Google Scholar 

  • Eslami, M., Hosseini, K., Matinfar, M., Mirzazadeh, M., Ilie, M., Gómez-Aguilar, J.F.: A nonlinear Schrödinger equation describing the polarization mode and its chirped optical solitons. Opt. Quant. Electron. 53(6), 1–9 (2021)

    Article  Google Scholar 

  • Ghanbari, B., Gómez-Aguilar, J.F., Bekir, A.: Soliton solutions in the conformable (2+1)-dimensional chiral nonlinear Schrödinger equation. J. Opt. 1–28 (2021). https://link.springer.com/article/10.1007%2Fs12596-021-00754-3

  • Gómez-Aguilar, J.F., Osman, M.S., Raza, N., Zubair, A., Arshed, S., Ghoneim, M.E., Mahmoud, E.E., Abdel-Aty, A.H.: Optical solitons in birefringent fibers with quadratic-cubic nonlinearity using three integration architectures”. AIP Adv. 11, 025121 (2021)

    Article  ADS  Google Scholar 

  • Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)

    Article  ADS  Google Scholar 

  • Inc, M.: New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations. Chaos Solitons Fractals 33(4), 1275–1284 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Inc, M., Kilic, B.: Soliton structures of some generalized nonlinear dispersion evolution systems. Proc. Rom. Acad. Series A 16, 430–436 (2015)

    MathSciNet  Google Scholar 

  • Inc, M., Kilic, B.: The first integral method for the perturbed Wadati-Segur-Ablowitz equation with time dependent coefficient. Kuwait J. Sci. 43, 81–87 (2016)

    MathSciNet  MATH  Google Scholar 

  • Inc, M., Ulutas, E.: Optical soliton solutions for generalized NLSE by using Jacobi elliptic functions. Optoelectron. Adv. Metarials Rapid Commun. 9, 1081–1087 (2015)

    Google Scholar 

  • Inc, M., Ates, E., Tchier, F.: Optical solitons of the coupled nonlinear Schrdingers equation with spatiotemporal dispersion. Nonlinear Dyn. 85, 1319–1329 (2016a)

    Article  MATH  Google Scholar 

  • Inc, M., Kilic, B., Baleanu, D.: Optical soliton solutions of the pulse propagation generalized equation in parabolic-law media with space-modulated coecients. Optik 127, 1056–1058 (2016b)

    Article  ADS  Google Scholar 

  • Kaminow, I.: Polarization in optical fibers. IEEE J. Quantum Electron. 17, 15–22 (1981)

    Article  ADS  Google Scholar 

  • Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95- International Conference on Neural Networks, Perth, WA, Australia, pp. 1942–1948 vol. 4, (1995)

  • Kilic, B., Inc, M.: The First Integral Method for the time fractional Kaup-Boussinesq System with time dependent coefficient. Appl. Math. Comput. 254, 70–74 (2015)

    MathSciNet  MATH  Google Scholar 

  • Kilic, B., Inc, M.: On optical solitons of the resonant Schrdingers equation in optical fibers with dual-power law nonlinearity and time-dependent coefcients. Waves Random Complex Media 25, 245–251 (2015)

    Article  MATH  Google Scholar 

  • Kilic, B., Inc, M.: Soliton solutions for the KunduEckhaus equation with the aid of unified algebraic and auxiliary equation expansion methods. J. Electromag. Waves Appl. 30, 871–879 (2016)

    Article  Google Scholar 

  • Kilic, B., Inc, M.: Optical solitons for the Schrodinger-Hirota equation with power law nonlinearity by the Backlund transformation. Optik 138, 64–67 (2017)

    Article  Google Scholar 

  • Kivshar, Y.S., Agrawal, G.P.: Chapter 3 - Temporal Solitons. In: Agrawal, G.P. (ed.) Optical solitons from fibers to photonic crystals, pp. 63–103. Academic Press, Boston (2003)

    Google Scholar 

  • Korpinar, Z., Tchier, F., Inc, M.: On optical solitons of the fractional (3+1)-dimensional NLSE with conformable derivatives. Front. Phys. 8, 87 (2020)

    Article  Google Scholar 

  • Li, B., Zhao, J., Triki, H., Ekici, M., Mirzazadeh, M., Zhou, Q., Liu, W.: Soliton interactions for optical switching systems with symbolic computation. Optik 175, 177–180 (2018)

    Article  ADS  Google Scholar 

  • Mishra, V., Varshney, S.K.: Interplay between Raman self-frequency shift and cross-phase modulation in the vector-soliton of a birefringent fiber. J. Opt. Soc. Am. B 36(8), 1806–1815 (2019)

    Article  ADS  Google Scholar 

  • Nguyen, J.H., Luo, D., Hulet, R.G.: Formation of matter-wave soliton trains by modulational instability. Science 356, 422–426 (2017)

    Article  ADS  Google Scholar 

  • Raza, N., Hassan, Z., Gómez-Aguilar, J.F.: Extraction of new super-Gaussian solitons via collective variables. Opt. Quant. Electron. 53(8), 1–15 (2021)

    Article  Google Scholar 

  • Russell, J. S.: Report of 14th Meeting of the British Association for Advancement of Science, York, pp. 311–390 (1844)

  • Shahraki, M., Emami, F.: Polarization effects on modulation instability of silicon on insulator waveguides. J. Nanophotonics 10, 026006 (2016)

    Article  ADS  Google Scholar 

  • Sinkin, O.V., Holzlöhner, R., Zweck, J., Menyuk, C.R.: Optimization of the split-step fourier method in modeling optical-fiber communications systems. J. Lightwave Technol. 21(1), 61–68 (2003)

    Article  ADS  Google Scholar 

  • Song, Y., Shi, X., Wu, C., Tang, D., Zhang, H.: Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 6, 021313 (2019)

    Article  ADS  Google Scholar 

  • Tchier, F., Aslan, E.C., Inc, M.: Optical solitons in parabolic law medium: Jacobi elliptic function solution. Nonlinear Dyn. 85, 2577–2582 (2016)

    Article  MathSciNet  Google Scholar 

  • Tong, S., Gan, M., Zhuang, Z., Liu, H., Cheng, H., Li, J., Qiu, P., Wang, K.: “Manipulating soliton polarization in soliton self-frequency shift and its application to 3-photon microscopy in vivo. J. Lightwave Technol. 38(8), 2450–2455 (2020)

    Article  ADS  Google Scholar 

  • Trocha, P., Karpov, M., Ganin, D., Pfeiffer, M.H., Kordts, A., Wolf, S., Krockenberger, J., Marin-Palomo, P., Weimann, C., Randel, S.: Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018)

    Article  ADS  Google Scholar 

  • Yang, C., Li, W., Yu, W., Liu, M., Zhang, Y., Ma, G., Lei, M., Liu, W.: Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber. Nonlinear Dyn. 92, 203–213 (2018)

    Article  MATH  Google Scholar 

  • Yi, X., Yang, Q.-F., Yang, K.Y., Vahala, K.: Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. Opt. Lett. 41, 3419–3422 (2016)

    Article  ADS  Google Scholar 

  • Yue, C., Khater, M.M.A., Inc, M., Attia, R.A.M., Lu, D.: Abundant analytical solutions of the fractional nonlinear (2+1)-dimensional BLMP equation arising in incompressible fluid. Int. J. Modern Phys. B 34(9), 2050084 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zabusky, N.J., Kruskal, M.D.: Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  ADS  MATH  Google Scholar 

  • Zeng, L., Zeng, J.: Gaussian-like and flat-top solitons of atoms with spatially modulated repulsive interactions. J. Opt. Soc. Am. B 36(8), 2278–2284 (2019)

    Article  ADS  Google Scholar 

  • Zhang, Y.H., Hu, X.H., Lu, K.Q., Liu, B.Y., Liu, W.Y., Guo, R.L.: Steady-state multiple dark spatial solitons in closed-circuit photovoltaic media. J. Opt. Technol. 80(3), 135–141 (2013)

    Article  Google Scholar 

  • Zhang, Y., Yang, C., Yu, W., Liu, M., Ma, G., Liu, W.: Some types of dark soliton interactions in inhomogeneous optical fibers. Opt. Quant. Electron. 50, 295 (2018)

    Article  Google Scholar 

  • Zhou, Y., Ren, Y.X., Shi, J., Mao, H., Wong, K.K.Y.: Buildup and dissociation dynamics of dissipative optical soliton molecules. Optica 7(8), 965–972 (2020)

    Article  ADS  Google Scholar 

  • Zhou, M., He, J., Li, C., Liu, Y.G., Yue, Y., He, R., Chen, S., Zhang, L., Zhu, L., Zhu, K., Chang, K., Wang, Z.: Oscillatory self-organization dynamics between soliton molecules induced by gain fluctuation. Opt. Express 29(11), 16362–16376 (2021)

    Article  ADS  Google Scholar 

  • Zhu, S., Wu, Z., Fu, S., Zhao, L.: Manipulation of group-velocity-locked vector dissipative solitons and properties of the generated high-order vector soliton structure. Appl. Opt. 57, 2064–2068 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Shahraki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahraki, M., Malekpoor, H. The effects of polarization on soliton interactions inside optical fibers. Opt Quant Electron 54, 122 (2022). https://doi.org/10.1007/s11082-022-03514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03514-0

Keywords

Navigation