Skip to main content
Log in

Design of a highly sensitive tunable plasmonic refractive index sensor based on a ring-shaped nano-resonator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a high-sensitivity and tunable plasmonic refractive index sensor based on a nano ring- shaped resonator is proposed. This structure can be used as a multi-wavelength refractive index sensor with a maximum high-sensitivity of 2160 nm/RIU and maximum FoM of 55.2 \(\mathrm{R}I{U}^{-1}\). The sensitivity is nearly 2 times higher than that of the previously reported basic structure based on a nanodisk shaped resonator. Besides, the sensitivity of the proposed structure is highest in comparison with the other reported works in recent years in this literature. The influences of various structural parameters on the transmission spectrum and sensing performance are comprehensively investigated using the finite-difference time-domain (FDTD) and finite-element (FEM) methods. More importantly, the results demonstrate that the sensitivity of the proposed sensor is robust to any fabrication fluctuation. Due to the simplicity of its topology and its easiness to be fabricated, the proposed high-sensitivity sensor can be a competitive candidate for sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhavan, A., Ghafoorifard, H., Abdolhosseini, S., Habibiyan, H.: Plasmon-induced transparency based on a triangle cavity coupled with an ellipse-ring resonator. Appl. Opt. 56, 9556–9563 (2017)

    Article  ADS  Google Scholar 

  • Akhavan, A., Ghafoorifard, H., Abdolhosseini, S., Habibiyan, H.: Metal–insulator–metal waveguide-coupled asymmetric resonators for sensing and slow light applications. IET Optoelectron. 12, 220–227 (2018)

    Article  Google Scholar 

  • Alipour, A., Mir, A., Farmani, A.: Ultra high-sensitivity and tunable dual-band perfect absorber as a plasmonic sensor. Opt. Laser Technol. 127, 106201 (2020)

    Article  Google Scholar 

  • Armaghani, S., Khani, S., Danaie, M.: Design of all-optical graphene switches based on a mach-zehnder interferometer employing optical kerr effect. Superlattices Microstruct. 135, 106244 (2019)

    Article  Google Scholar 

  • Al-mahmod, M.J., Hyder, R., Islam M. Z.,: Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications. Photonics and Nanostructures-Fundamentals and Applications, 25: 52–57 (2017)

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  • Butt, M., Khonina, S., Kazanskiy, N.: Hybrid plasmonic waveguide-assisted metal–insulator–metal ring resonator for refractive index sensing. J. Mod. Opt. 65, 1135–1140 (2018a)

    Article  ADS  Google Scholar 

  • Butt, M., Khonina, S., Kazanskiy, N.,: Plasmonic refractive index sensor based on mim square ring resonator, in: 2018 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), pp. 1–4 (2018)

  • Butt, M., Khonina S., Kazanskiy, N.,: Metal-insulator-metal nano square ring resonator for gas sensing applications, Waves in Random and Complex Media (2019) 1–11.

  • Butt, M., Khonina, S., Kazanskiy, N.: Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J. Mod. Opt. 66, 1038–1043 (2019a)

    Article  ADS  Google Scholar 

  • Butt, M., Khonina, S., Kazanskiy, N.: An array of nano-dots loaded mim square ring resonator with enhanced sensitivity at nir wavelength range. Optik 202, 163655 (2020)

    Article  ADS  Google Scholar 

  • Chen, L., Liu, Y., Yu, Z., Wu, D., Ma, R., Zhang, Y., Ye, H.: Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity. Opt. Express 24, 9975–9983 (2016)

    Article  ADS  Google Scholar 

  • Chen, F., Zhang, H., Sun, L., Li, J., Yu, C.: Temperature tunable fano resonance based on ring resonator side coupled with a mim waveguide. Opt. Laser Technol. 116, 293299 (2019)

    Article  Google Scholar 

  • Chung, T., Hwang, C., S., H., Ahn, M.-S., Jeong, K.-H.,: Plasmonics 14 , 407–413 (2019)

  • Danaie, M., Kiani, B.: Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photon. Nanostruct. Fundam. Appl. 31, 89–98 (2018)

    Article  ADS  Google Scholar 

  • Danaie, M., Shahzadi, A.: Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped si resonator. Plasmonics 14, 1453–1465 (2019)

    Article  Google Scholar 

  • Ebrahimy, M.N., Moghaddam, A.B., Andalib, A., Naziri, M., Ronagh, N.: Nanoscale biosensor based on silicon photonic cavity for home healthcare diagnostic application. Int. J. Nanosci. 14, 1550026 (2015)

    Article  Google Scholar 

  • Fang, Y., Wen, K., Li, Z., Wu, B., Chen, L., Zhou, J., Zhou, D.: Multiple fano resonances based on end-coupled semi-ring rectangular resonator. IEEE Photon. J. 11, 1–8 (2019)

    Article  Google Scholar 

  • Farmani, A.: Three-dimensional fdtd analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B 36, 401–407 (2019)

    Article  ADS  Google Scholar 

  • Hajshahvaladi, L., Kaatuzian, H., Danaie, M.: Design and simulation of infrared a photonic crystal band pass filters for fiber optics communication, in. Iran. Conf. Electr. Eng. (ICEE) 2017, 527–531 (2017)

    Google Scholar 

  • Hajshahvaladi, L., Kaatuzian, H., Danaie, M.: Design and analysis of a plasmonic demultiplexer based on band-stop filters using doublenanodisk-shaped resonators. Opt. Quant. Electron. 51, 391 (2019)

    Article  Google Scholar 

  • Hajshahvaladi, L., Kaatuzian, H., Danaie, M.: Design of a hybrid photonic-plasmonic crystal refractive index sensor for highly sensitive and high-resolution sensing applications. Phys. Lett. A 420, 127754 (2021)

    Article  Google Scholar 

  • Hajshahvaladi, L., Kaatuzian, H., Danaie, M.: A high-sensitivity refractive index biosensor based on si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution. Opt. Commun. 502, 127421 (2022)

    Article  Google Scholar 

  • Han, Z., Van, V., Herman, W., Ho, P.T.: Aperture-coupled mim plasmonic ring resonators with sub-diffraction modal volumes. Opt. Express 17(15), 12678–12684 (2009)

    Article  ADS  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  • Kaatuzian, A. N. Taheri, Applications of nano-scale plasmonic structures in design of stub filters-a step towards realization of plasmonic switches, Photonic Crystals, 93 (2015).

  • Kazanskiy, N., Khonina, S., Butt, M.: Plasmonic sensors based onmetal-insulator-metal waveguides for refractive index sensing applications: a brief review. Physica E: Low-dimensional Syst. Nanostruct. 19, 113798 (2020)

    Article  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt. Eng. 57, 107102 (2018)

    Article  ADS  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt. Commun. 420, 147–156 (2018a)

    Article  ADS  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. Superlattices Microstruct. 141, 106481 (2020)

    Article  Google Scholar 

  • Lee, T.-W., Kwon, S.-H., et al.: Dual-function metal–insulator–metal plasmonic optical filter. IEEE Photon. J. 7, 1–8 (2015)

    Google Scholar 

  • Lin, Q., Zhai, X., Wang, L.-L., Luo, X., Liu, G.-D., Liu, J.-P., Xia, S.-X.: A novel design of plasmon-induced absorption sensor. Appl. Phys. Express 9, 062002 (2016)

    Article  ADS  Google Scholar 

  • Liu, H., Gao, Y., Zhu, B., Ren, G., Jian, S.: A t-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators. Opt. Commun. 334, 164–169 (2015)

    Article  ADS  Google Scholar 

  • Livani, A.M., Kaatuzian, H.: Analysisandsimulationofnonlinearityandeffectsofspontaneousemissioninschottky–junction–basedplasmonic amplifiers. Appl. Opt. 54, 6103–6110 (2015)

    Article  ADS  Google Scholar 

  • Livani, A.M., Kaatuzian, H.: Modulation–frequency analysis of an electrically pumped plasmonic amplifier. Plasmonics 12, 27–32 (2017)

    Article  Google Scholar 

  • Mencarelli, D., Bellucci, S., Sindona, A., Pierantoni, L.: Spatial dispersion effects upon local excitation of extrinsic plasmons in a graphene microdisk. J. Phys. D: Appl. Phys. 48(46), 465104 (2015)

    Article  ADS  Google Scholar 

  • Mirzanejhad, S., Ghadi, A., Daraei, M.E.: Numerical study of nanoscale biosensor based on surface plasmon polariton propagation in machzehnder interferometer structure. Physica B 557, 141–146 (2019)

    Article  ADS  Google Scholar 

  • Ni, B., Chen, X., Xiong, D., Liu, H., Hua, G., Chang, J., Zhang, J., Zhou, H.: Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Opt. Quant. Electron. 47, 1339–1346 (2015)

    Article  Google Scholar 

  • Ordal, M., Long, L., Bell, R., Bell, S., Bell, R., Alexander, R., Ward, C.: Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. Appl. Opt. 22, 1099–1119 (1983)

    Article  ADS  Google Scholar 

  • Pashaki, E.R., Kaatuzian, H., Livani, A.M.: Hydrodynamic analysis and responsivity improvement of a metal/semiconductor/metal plasmonic detector. Plasmonics 14, 1639–1648 (2019)

    Article  Google Scholar 

  • Sakib, M.A., Yousuf, S.E.H., Gupta, S.D., Islam, M.Z.: Proposition and numerical analysis of a plasmonic sensing structure of metallodielectric grating and silver nano-slabs in a metal-insulator-metal configuration. Plasmonics 13, 2205–2213 (2018)

    Article  Google Scholar 

  • Taheri, A.N., Kaatuzian, H.: Numerical investigation of a nano-scale electro-plasmonic switch based on metal-insulator-metal stub filter. Opt. Quant. Electron. 47, 159–168 (2015)

    Article  Google Scholar 

  • Tao, J., Hu, B., He, X.Y., Wang, Q.J.: Tunable subwavelength terahertz plasmonic stub waveguide filters. IEEE Trans. Nanotechnol. 12, 1191–1197 (2013)

    Article  ADS  Google Scholar 

  • Wang, L., Zeng, Y.-P., Wang, Z.-Y., Xia, X.-P., Liang, Q.-Q.: The energy separation effect based on the disk resonance multichannel mim waveguide. Mod. Phys. Lett. B 30, 1650344 (2016)

    Article  ADS  Google Scholar 

  • Wang, L., Zeng, Y.-P., Wang, Z.-Y., Xia, X.-P., Liang, Q.-Q.: A refractive index sensor based on an analogy t shaped metal–insulator–metal waveguide. Optik 172, 1199–1204 (2018)

    Article  ADS  Google Scholar 

  • Wang, M., Zhang, M., Wang, Y., Zhao, R., Yan, S.: Fano resonance in an asymmetric mim waveguide structure and its application in a refractive index nanosensor. Sensors 19, 791 (2019)

    Article  ADS  Google Scholar 

  • Wei, W., Zhang, X., Ren, X.: Plasmonic circular resonators for refractive index sensors and filters. Nanoscale Res. Lett. 10, 1–6 (2015)

    Article  ADS  Google Scholar 

  • Xie, Y.-Y., He, C., Li, J.-C., Song, T.-T., Zhang, Z.-D., Mao, Q.-R.: Theoretical investigation of a plasmonic demultiplexer in mim waveguide crossing with multiple side-coupled hexagonal resonators. IEEE Photon. J. 8, 1–12 (2016)

    Google Scholar 

  • Yan, S.-B., Luo, L., Xue, C.-Y., Zhang, Z.-D.: A refractive index sensor based on a metal-insulator-metal waveguide-coupled ring resonator. Sensors 15, 29183–29191 (2015)

    Article  ADS  Google Scholar 

  • Yan, S., Zhang, M., Zhao, X., Zhang, Y., Wang, J., Jin, W.: Refractive index sensor based on a metal–insulator–metal waveguide coupled with a symmetric structure. Sensors 17, 2879 (2017)

    Article  ADS  Google Scholar 

  • Yang, R., Lu, Z.: Subwavelength plasmonic waveguides and plasmonic materials. Int. J. Opt. 2012, 1–12 (2010)

    Article  Google Scholar 

  • Yu, S., Zhao, T., Yu, J., Pan, D.: Tuning multiple fano resonances for on-chip sensors in a plasmonic system. Sensors 19, 1559 (2019)

    Article  ADS  Google Scholar 

  • Zhang, X., Shao, M., Zeng, X.: High quality plasmonic sensors based on fano resonances created through cascading double asymmetric cavities. Sensors 16, 1730 (2016)

    Article  ADS  Google Scholar 

  • Zhao, X., Zhang, Z., Yan, S.: Tunable fano resonance in asymmetric mim waveguide structure. Sensors 17, 1494 (2017)

    Article  ADS  Google Scholar 

  • Zheng, G., Chen, Y., Xu, L., Lai, M., Liu, Y.: Metal–insulator–metal waveguide-based band-pass filter with circular ring resonator containing kerr nonlinear medium. Opt. Commun. 305, 164–169 (2013)

    Article  ADS  Google Scholar 

  • Zou, S., Wang, F., Liang, R., Xiao, L., Hu, M.: A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review. IEEE Sens. J. 15, 646–650 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Kaatuzian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajshahvaladi, L., Kaatuzian, H., Danaie, M. et al. Design of a highly sensitive tunable plasmonic refractive index sensor based on a ring-shaped nano-resonator. Opt Quant Electron 54, 51 (2022). https://doi.org/10.1007/s11082-021-03431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03431-8

Keywords

Navigation