Skip to main content
Log in

Figure of merit enhancement of surface plasmon resonance biosensor based on Talbot effect

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper reports the numerical investigation of the Talbot effect for biomaterial detection at optical frequencies. Cytop polymer grating Plasmonics structure with periodicity comparable to the incident wavelength are applied to evaluate of the plasmonics Talbot biosensor. Significant sensitivity from the proposed Talbot biosensor is obtained. For this purpose, the effect of the different biomaterials including Ether, Ethyleneglycol, Chlorobenzene and Quinoline on plasmonics Talbot effects at wavelength range of 550-650 nm are then inspected to improve the structural parameters of the biosensor. Also, the sensitivity and figure-of-merit are calculated. Our numerical results show that the proposed biosensor are able to operate as a high sensitivity with maximum FOM of 20.99, and sensitivity of 324 nm/refractive index unit for small change of \(\Delta n\)= 0.4, in the refractive index of biomaterials. We believe that the proposed biosensor can be applied as a label free on-chip biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

All data included in this paper are available upon request by contact with the contact corresponding author.

References

  • Amoosoltani, N., Yasrebi, N., Farmani, A., Zarifkar, A.: A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation effect. IEEE Sensors J. (2020)

  • Amoosoltani, N., Zarifkar, A., Farmani, A.: Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J. Comput. Electron. 18(4), 1354 (2019)

    Article  Google Scholar 

  • Brazhnikov, D., Kotov, M., Kovalenko, A.: Reference-free wave-front sensor based on the Talbot effect, in Fourteenth International Conference on Correlation Optics, vol. 11369 (International Society for Optics and Photonics, 2020), vol. 11369, p. 113690X

  • Chen, H.L., Wang, G., Ma, C., Cai, Z.N., Liu, W.B., Wang, S.J.: An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease. Neurocomputing 184, 131 (2016)

  • Chen, H., Heidari, A.A., Chen, H., Wang, M., Pan, Z., Gandomi, A.H.: Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies. Futur. Gener. Comput. Syst. 111, 175 (2020)

    Article  Google Scholar 

  • Dennis, M.R., Zheludev, N.I., de Abajo, F.J.G.: The plasmon Talbot effect. Opt. Express 15(15), 9692 (2007)

    Article  ADS  Google Scholar 

  • Farmani, A., Soroosh, M., Mozaffari, M.H., Daghooghi,T.: Optical nanosensors for cancer and virus detections. In: Nanosensors for Smart Cities, pp. 419–432. Elsevier (2020)

  • Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B 36(2), 401 (2019)

    Article  ADS  Google Scholar 

  • Farmani, A., Mir, A.: Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photon. Technol. Lett. 31(8), 643 (2019)

    Article  ADS  Google Scholar 

  • Farmani, A., Mir, A., Bazgir, M., Zarrabi, F.B.: Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study. Physica E 104, 233 (2018)

    Article  ADS  Google Scholar 

  • Farmani, H., Farmani, A., Biglari, Z.: A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Physica E 116, 113730 (2020)

    Article  Google Scholar 

  • Feng, Q., Li, Y., Wang, N., Hao, Y., Chang, J., Wang, Z., Zhang, X., Zhang, Z., Wang, L.: A biomimetic nanogenerator of reactive nitrogen species based on battlefield transfer strategy for enhanced immunotherapy. Small 16(25), 2002138 (2020)

    Article  Google Scholar 

  • Fu, X., Yang, Y.: Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks. Reliab. Eng. Syst. Saf. 197, 106815 (2020)

    Article  Google Scholar 

  • Golfazani, A.J., Alipour, A., Bakhshipour, M., Farmani, A., Mir, A.: Analytical and numerical models of a highly sensitive MDM plasmonic nano-structure in near-infrared range. Plasmonics 1–6 (2020)

  • Gong, C., Hu, Y., Gao, J., Wang, Y., Yan, L.: An improved delay-suppressed sliding-mode observer for sensorless vector-controlled PMSM. IEEE Trans. Industr. Electron. 67(7), 5913 (2019)

    Article  Google Scholar 

  • Hamzavi-Zarghani, Z., Yahaghi, A., Matekovits, L., Farmani, A.: Tunable mantle cloaking utilizing graphene metasurface for terahertz sensing applications. Opt. Express 27(24), 34824 (2019)

    Article  ADS  Google Scholar 

  • Hu, J.w., Zheng, B.y., Wang, C., Zhao, C.h., Hou, X.l., Pan, Q., Xu, Z.: A survey on multi-sensor fusion based obstacle detection for intelligent ground vehicles in off-road environments. Front. Inf. Technol. Electron. Eng. 21, 675 (2020)

  • Hu, L., Hong, G., Ma, J., Wang, X., Chen, H.: An efficient machine learning approach for diagnosis of paraquat-poisoned patients. Comput. Biol. Med. 59, 116 (2015)

    Article  Google Scholar 

  • Hu, J., Chen, H., Heidari, A.A., Wang, M., Zhang, X., Chen, Y., Pan, Z.: Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection. Knowl.-Based Syst. 213, 106684 (2021)

    Article  Google Scholar 

  • Hua, Y., Suh, J.Y., Zhou, W., Huntington, M.D., Odom, T.W.: Talbot effect beyond the paraxial limit at optical frequencies. Opt. Express 20(13), 14284 (2012)

    Article  ADS  Google Scholar 

  • Iwata, K., Satoh, K., Moriwaki, K.: Compact sensor for measuring two-dimensional tilt using a two-dimensional transmission grating and the Talbot effect. Appl. Opt. 50(3), 261 (2011)

    Article  ADS  Google Scholar 

  • Jeon, J., Maram, R., van Howe, J., Azaña, J.: Programmable passive Talbot optical waveform amplifier. Opt. Express 26(6), 6872 (2018)

    Article  ADS  Google Scholar 

  • Jiang, Q., Wang, G., Jin, S., Li, Y., Wang, Y.: Predicting human microRNA-disease associations based on support vector machine. Int. J. Data Min. Bioinform. 8(3), 282 (2013)

    Article  Google Scholar 

  • Jiang, D., Chen, F.X., Zhou, H., Lu, Y.Y., Tan, H., Yu, S.J., Yuan, J., Liu, H., Meng, W., Jin, Z.B.: Bioenergetic crosstalk between mesenchymal stem cells and various ocular cells through the intercellular trafficking of mitochondria. Theranostics 10(16), 7260 (2020)

    Article  Google Scholar 

  • Katiyi, A., Karabchevsky, A.: Deflected Talbot mediated overtone spectroscopy in near-infrared as a label-free sensor on a chip, ACS sensors (2020)

  • Kim, G.W., Kang, S.H., Ha, J.W.: Characterizing the non-paraxial Talbot effect of two-dimensional periodic arrays of plasmonic gold nanodisks by differential interference contrast microscopy. Analyst 145(23), 7541 (2020)

    Article  ADS  Google Scholar 

  • Koriakovskii, A., Marchenko, V.: A wave-front sensor based on the Talbot effect. ZhTFi 51, 1432 (1981)

    ADS  Google Scholar 

  • Kovalenko, A.V., Kotov, M.M., Kurashov, V.N., Movchan, M.M.: Role of diffraction grating profile in the wavefront sensor based on the Talbot effect. In: Eleventh International Conference on Correlation Optics, vol. 9066 (International Society for Optics and Photonics, 2013), vol. 9066, p. 90660R

  • Li, L., Fu, Y., Wu, H., Zheng, L., Zhang, H., Lu, Z., Sun, Q., Yu, W.: The Talbot effect of plasmonic nanolenses. Opt. Express 19(20), 19365 (2011)

    Article  ADS  Google Scholar 

  • Li, K., Xia, F., Wang, M., Sun, P., Liu, T., Hu, W., Kong, W., Yun, M., Dong, L.: Discrete Talbot effect in dielectric graphene plasmonic waveguide arrays. Carbon 118, 192 (2017)

    Article  Google Scholar 

  • Li, C., Hou, L., Sharma, B.Y., Li, H., Chen, C., Li, Y., Zhao, X., Huang, H., Cai, Z., Chen, H.: Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Comput. Methods Prog. Biomed. 153, 211 (2018)

    Article  Google Scholar 

  • Lin, J., Cai, X., Liu, Z., Liu, N., Xie, M., Zhou, B., Wang, H., Guo, Z.: Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on Cassie-Baxter wetting state. Adv. Func. Mater. 30(23), 2000398 (2020)

    Article  Google Scholar 

  • Liu, J., Zhou, S., Hu, S., Gao, H., He, Y., Cheng, Y.: Spectrum-integral Talbot effect for UV photolithography with extended DOF. IEEE Photon. Technol. Lett. 27(20), 2201 (2015)

    Article  ADS  Google Scholar 

  • Moradiani, F., Farmani, A., Mozaffari, M.H., Seifouri, M., Abedi, K.: Systematic engineering of a nanostructure plasmonic sensing platform for ultrasensitive biomaterial detection. Opt. Commun. 126178 (2020)

  • Mozaffari, M.H., Farmani, A.: On-chip single-mode optofluidic microresonator dye laser sensor. IEEE Sens. J. 20(7), 3556 (2019)

    Article  ADS  Google Scholar 

  • Podanchuk, D.V., Goloborodko, A.A., Kotov, M.M.: Features of the wavefront sensor based on the Talbot effect. In: 2013 International Conference on Advanced Optoelectronics and Lasers (CAOL 2013) (IEEE, 2013), pp. 337–339

  • Podanchuk, D.V., Kotov, M.M., Goloborodko, A.A., Kurashov, V.N., Dan’ko, V.P., Kurashov, A.V.: Influence of aperture size on wavefront sensor based on the Talbot effect in Eleventh International Conference on Correlation Optics, vol. 9066 (International Society for Optics and Photonics, 2013), vol. 9066, p. 90660S

  • Podanchuk, D.V., Kurashov, V.N., Goloborodko, A.A., Dan’ko, V.P., Kotov, M.M., Parhomenko, O.O.: Holographic wavefront sensor based on the Talbot effect. In: Tenth International Conference on Correlation Optics, vol. 8338 (International Society for Optics and Photonics, 2011), vol. 8338, p. 83380G

  • Podanchuk, D.V., Kurashov, V.N., Kovalenko, A.V., Dan’ko, V.P., Kotov, M.M., Goloborodko,N.S.: Adaptive wavefront sensor based on the Talbot effect, in Twelfth International Conference on Correlation Optics, vol. 9809 (International Society for Optics and Photonics, 2015), vol. 9809, p. 98090A

  • Podanchuk, D., Kovalenko, A., Kurashov, V., Kotov, M., Goloborodko, A., Danko, V.: Bottlenecks of the wavefront sensor based on the Talbot effect. Appl. Opt. 53(10), B223 (2014)

    Article  Google Scholar 

  • Qu, K., Wei, L., Zou, Q.: A review of DNA-binding proteins prediction methods. Curr. Bioinform. 14(3), 246 (2019)

    Article  Google Scholar 

  • Salama, N.H., Patrignani, D., De Pasquale, L., Sicre, E.E.: Wavefront sensor using the Talbot effect. Opt. Laser Technol. 31(4), 269 (1999)

    Article  ADS  Google Scholar 

  • Shan, W., Qiao, Z., Heidari, A.A., Chen, H., Turabieh, H., Teng, Y.: Knowledge-based double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis. Systems 214, 106728 (2021)

    Google Scholar 

  • Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H., Yang, B., Liu, D.: Evolving support vector machines using fruit fly optimization for medical data classification. Knowl.-Based Syst. 96, 61 (2016)

    Article  Google Scholar 

  • Shi, X., Yang, W., Xing, H., Chen, X.: Discrete plasmonic Talbot effect in finite metal waveguide arrays. Opt. Lett. 40(8), 1635 (2015)

    Article  ADS  Google Scholar 

  • Siegel, C., Loewenthal, F., Balmer, J.: A wavefront sensor based on the fractional Talbot effect. Opt. Commun. 194(4–6), 265 (2001)

    Article  ADS  Google Scholar 

  • Sun, M., Yan, L., Zhang, L., Song, L., Guo, J., Zhang, H.: New insights into the rapid formation of initial membrane fouling after in-situ cleaning in a membrane bioreactor. Process Biochem. 78, 108 (2019)

    Article  Google Scholar 

  • Tu, J., Chen, H., Liu, J., Heidari, A.A., Zhang, X., Wang, M., Ruby, R., Pham, Q.V.: Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance. Knowl.-Based Syst. 212, 106642 (2021)

    Article  Google Scholar 

  • Wang, M., Chen, H.: Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl. Soft Comput. 88, 105946 (2020)

    Article  Google Scholar 

  • Wang, A., Gill, P., Molnar, A.: Light field image sensors based on the Talbot effect. Appl. Opt. 48(31), 5897 (2009)

    Article  ADS  Google Scholar 

  • Wang, Y., Zhou, K., Zhang, X., Yang, K., Wang, Y., Song, Y., Liu, S.: Discrete plasmonic Talbot effect in subwavelength metal waveguide arrays. Opt. Lett. 35(5), 685 (2010)

    Article  ADS  Google Scholar 

  • Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., Huang, H., Tong, C.: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267, 69 (2017)

    Article  Google Scholar 

  • Wang, B., Zou, F., Cheng, J., Zhong, S.: Fault detection filter design for continuous-time nonlinear Markovian jump systems with mode-dependent delay and time-varying transition probabilities. Adv. Differ. Equ. 2017(1), 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X.F., Gao, P., Liu, Y.F., Li, H.F., Lu, F.: Predicting thermophilic proteins by machine learning. Curr. Bioinform. 15(5), 493 (2020)

    Google Scholar 

  • Xia, J., Chen, H., Li, Q., Zhou, M., Chen, L., Cai, Z., Fang, Y., Zhou, H.: Computer ultrasound-based differentiation of malignant and benign thyroid nodules: an extreme learning machine approach. Methods Prog. Biomed. 147, 37 (2017)

    Article  Google Scholar 

  • Xu, X., Chen, H.l.:Adaptive computational chemotaxis based on field in bacterial foraging optimization, Soft Computing 18(4), 797 (2014)

  • Xu, L., Jiang, S., Zou, Q.: An in silico approach to identification, categorization and prediction of nucleic acid binding proteins, bioRxiv (2020)

  • Xu, Y., Chen, H., Luo, J., Zhang, Q., Jiao, S., Zhang, X.: Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf. Sci. 492, 181 (2019)

    Article  MathSciNet  Google Scholar 

  • Yang, Y., Hou, C., Lang, Y., Sakamoto, T., He, Y., Xiang, W.: Omnidirectional motion classification with monostatic radar system using micro-Doppler signatures. IEEE Trans. Geosci. Remote Sens. 58(5), 3574 (2019)

    Article  ADS  Google Scholar 

  • Yu, C., Chen, M., Cheng, K., Zhao, X., Ma, C., Kuang, F., Chen,H.: SGOA: annealing-behaved grasshopper optimizer for global tasks. Eng. Comput. 1–28 (2021)

  • Yu, H., Li, W., Chen, C., Liang, J., Gui, W., Wang, M., Chen, H.: Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis. Eng. Comput. 1–29 (2020)

  • Zhang, X., Fan, M., Wang, D., Zhou, P., Tao, D.: Top-k feature selection framework using robust 0-1 integer programming. IEEE Trans. Neural Netw. Learn. Syst. (2020)

  • Zhang, X., Jiang, R., Wang, T., Wang, J.: Recursive neural network for video deblurring. IEEE Trans. Circuits Syst. Video Technol. (2020)

  • Zhang, Y., Liu, R., Wang, X., Chen, H., Li, C.: Boosted binary Harris hawks optimizer and feature selection. Eng. Comput. 1–30,(2020)

  • Zhang, X., Wang, T., Luo, W., Huang, P.: Multi-level fusion and attention-guided CNN for image dehazing. IEEE Trans. Circuits Syst. Video Technol. (2020)

  • Zhang, K., Zhang, J., Ma, X., Yao, C., Zhang, L., Yang, Y., Wang, J., Yao, J., Zhao, H.: History matching of naturally fractured reservoirs using a deep sparse autoencoder. SPE J. 1–22 (2021)

  • Zhang, J., Liu, B.: A review on the recent developments of sequence-based protein feature extraction methods. Curr. Bioinform. 14(3), 190 (2019)

    Article  Google Scholar 

  • Zhang, W., Zhao, C., Wang, J., Zhang, J.: An experimental study of the plasmonic Talbot effect. Opt. Express 17(22), 19757 (2009)

    Article  ADS  Google Scholar 

  • Zhang, X., Wang, D., Zhou, Z., Ma, Y.: Robust low-rank tensor recovery with rectification and alignment. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 238 (2019)

    Article  Google Scholar 

  • Zhang, H., Sun, M., Song, L., Guo, J., Zhang, L.: Fate of NaClO and membrane foulants during in-situ cleaning of membrane bioreactors: Combined effect on thermodynamic properties of sludge. Biochem. Eng. J. 147, 146 (2019)

    Article  Google Scholar 

  • Zhang, J., Chen, Q., Sun, J., Tian, L., Zuo, C.: On a universal solution to the transport-of-intensity equation. Opt. Lett. 45(13), 3649 (2020)

    Article  ADS  Google Scholar 

  • Zhang, X., Wang, T., Wang, J., Tang, G., Zhao, L.: Pyramid channel-based feature attention network for image dehazing. Comput. Vis. Image Underst. 197, 103003 (2020)

    Article  Google Scholar 

  • Zhang, H., Guan, W., Zhang, L., Guan, X., Wang, S.: Degradation of an Organic Dye by Bisulfite Catalytically Activated with Iron Manganese Oxides: The Role of Superoxide Radicals. ACS Omega 5(29), 18007 (2020)

    Article  Google Scholar 

  • Zhang, Y., Liu, R., Heidari, A.A., Wang, X., Chen, Y., Wang, M., Chen, H.: Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis. Neurocomputing 430, 185 (2021)

    Article  Google Scholar 

  • Zhang, X., Wang, J., Wang, T., Jiang, R., Xu, J., Zhao, L.: Robust feature learning for adversarial defense via hierarchical feature alignment. Inf. Sci. 560, 256 (2021)

    Article  MathSciNet  Google Scholar 

  • Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y., Chen, H.: Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl. Soft Comput. 24, 585 (2014)

    Article  Google Scholar 

  • Zhao, X., Zhang, X., Cai, Z., Tian, X., Wang, X., Huang, Y., Chen, H., Hu, L.: Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput. Biol. Chem. 78, 481 (2019)

    Article  Google Scholar 

  • Zhao, D., Liu, L., Yu, F., Heidari, A.A., Wang, M., Liang, G., Muhammad, K., Chen, H.: Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowl.-Based Syst. 216, 106510 (2021)

    Article  Google Scholar 

  • Zhu, S., Wang, X., Zheng, Z., Zhao, X.E., Bai, Y., Liu, H.: Synchronous measuring of triptolide changes in rat brain and blood and its application to a comparative pharmacokinetic study in normal and Alzheimer’s disease rats. J. Pharm. Biomed. Anal.s 185, 113263 (2020)

  • Zhu, S., Zheng, Z., Peng, H., Sun, J., Zhao, X.E., Liu, H.: Quadruplex stable isotope derivatization strategy for the determination of panaxadiol and panaxatriol in foodstuffs and medicinal materials using ultra high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 1616, 460794 (2020)

    Article  Google Scholar 

  • Zou, Q., Xing, P., Wei, L., Liu, B.: Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA. RNA 25(2), 205 (2019)

    Article  Google Scholar 

  • Zuo, C., Chen, Q., Tian, L., Waller, L., Asundi, A.: Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective. Opt. Lasers Eng. 71, 20 (2015)

    Article  Google Scholar 

  • Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A., Chen, Q.: High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci. Rep. 7(1), 1 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Farmani.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhadi, S., Farmani, A. & Hamidi, A. Figure of merit enhancement of surface plasmon resonance biosensor based on Talbot effect. Opt Quant Electron 53, 518 (2021). https://doi.org/10.1007/s11082-021-03168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03168-4

Keywords

Navigation