Skip to main content
Log in

Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR) is a spotlight technique for environmental monitoring. In this regard, an optical gas sensor based on SPR is investigated and analyzed here. The sensor is used for detection of toxic gases such as cyanogen, ethanol, propane, nitrogen dioxide, and phosgene. The performance of the sensor is inspected and optimized by considering different parameters such as the thickness of the metal layer, the material used for the prism, and the incident light angle and wavelength. The finite-difference time-domain method is used for simulation, and the optimization algorithm is particle swarm optimization. Simulation results show that the best metal thickness for gold, silver, aluminum, and copper is 44.39 nm, 43.16 nm, 18.195 nm, and 32.5 nm, respectively. Also, utilizing different materials such as SiO2, PMMA, BCB, MgF2, and cyclomer for the prism and the effect of temperature variation on these materials are studied, and it is shown that MgF2 demonstrates better performance. Furthermore, the results of the optimization indicate that the most suitable incident light angles (wavelengths) are 44.43° (900.59 nm), 45.5° (599.7 nm), 44.56° (300.1 nm), and 44.41° (899.4 nm) for gold, silver, aluminum, and copper, respectively. The sensor shows the best full-width at half-maximum and quality factor (Q) of 4.2 nm and 214.28, respectively, for the combination of MgF2 prism and a gold layer. The maximum sensitivity and figure of merit for gold layer are >120 (nm/RIU) and >20, and for copper layer are >270 (nm/RIU) and >30, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Syahir, A., Usui, K., Tomizaki, K.Y., Kajikawa, K., Mihara, H.: Label and label-free detection techniques for protein microarrays. Microarrays 4(2), 228–244 (2015)

    Article  Google Scholar 

  2. Zareyi, H., Vaezzadeh, M.: Geometry effect on plasmon frequency in triangular nanoprism. Plasmonics 13(5), 1759–1765 (2018)

    Article  Google Scholar 

  3. Javid, M.R., Miri, M., Zarifkar, A.: Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity. Opt. Commun. 410, 652–659 (2018)

    Article  Google Scholar 

  4. Roh, S., Chung, T., Lee, B.: Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors. Sensors 11(2), 1565–1588 (2011)

    Article  Google Scholar 

  5. Majdi, M., Fathi, D.: Graphene-based nano bio-sensor: sensitivity improvement. Sci. Iran. 24(6), 3531–3535 (2017)

    Google Scholar 

  6. Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 112, 404–414 (2017)

    Article  Google Scholar 

  7. Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 160(1), 623–631 (2011)

    Article  Google Scholar 

  8. Motavas, M.H., Zarifkar, A.: Low threshold nanorod-based plasmonic nanolasers with optimized cavity length. Opt. Laser Technol. 111, 315–322 (2019)

    Article  Google Scholar 

  9. Purkayastha, A., Srivastava, T., Jha, R.: Ultrasensitive THz–plasmonics gaseous sensor using doped graphene. Sens. Actuators B Chem. 227, 291–295 (2016)

    Article  Google Scholar 

  10. Juan-Colas, J., Johnson, S., Krauss, T.: Dual-mode electro-optical techniques for biosensing applications: a review. Sensors 17(9), 2047 (2017)

    Article  Google Scholar 

  11. Mohammad-Yousefi, S., Rahbarpour, S., Ghafoorifard, H.: Describing the effect of Ag/Au modification on operating temperature and gas sensing properties of thick film SnO2 gas sensors by gas diffusion theory. Mater. Chem. Phys. 227, 148–156 (2019)

    Article  Google Scholar 

  12. Zeng, S., Sreekanth, K.V., Shang, J., Yu, T., Chen, C.K., Yin, F., Baillargeat, D., Coquet, P., Ho, H.P., Kabashin, A.V., Yong, K.T.: Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater. 27(40), 6163–6169 (2015)

    Article  Google Scholar 

  13. Esfandiyari, M., Norouzi, M., Haghdoust, P., Jarchi, S.: Study of a surface plasmon resonance optical fiber sensor based on periodically grating and graphene. Silicon 10(6), 2711–2716 (2018)

    Article  Google Scholar 

  14. Khani, S., Danaie, M., Rezaei, P.: Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt. Eng. 57(10), 107102 (2018)

    Article  Google Scholar 

  15. Caucheteur, C., Guo, T., Albert, J.: Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. 407(14), 3883–3897 (2015)

    Article  Google Scholar 

  16. Alipour, A., Farmani, A., Mir, A.: High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens. J. 18(17), 7047–7054 (2018)

    Article  Google Scholar 

  17. Rezaei, M.H., Zarifkar, A., Miri, M.: Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio. Opt. Mater. 84, 572–578 (2018)

    Article  Google Scholar 

  18. Farmani, A., Miri, M., Sheikhi, M.H.: Tunable resonant Goos-Hanchen and Imbert-Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. J. Opt. Soc. Am. B 34(6), 1097–1106 (2017)

    Article  Google Scholar 

  19. Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J. Opt. Soc. Am. B 36(2), 401–407 (2019)

    Article  Google Scholar 

  20. Karimi, M., Ahmadi, V.: Microscopic analysis of gain spectrum of surface plasmons in graphene. Resul. Phys. 6, 754–760 (2016)

    Article  Google Scholar 

  21. Meshginqalam, B., Barvestani, J.: Aluminum and phosphorene based ultrasensitive SPR biosensor. Opt. Mater. 86, 119–125 (2018)

    Article  Google Scholar 

  22. Faramarzi, V., Ahmadi, V., Golmohamadi, F.G., Fotouhi, B.: A biosensor based on plasmonic wave excitation with diffractive grating structure. Sci. Iran. 24(6), 3441–3447 (2017)

    Google Scholar 

  23. Foley IV, J.J., Harutyunyan, H., Rosenmann, D., Divan, R., Wiederrecht, G.P., Gray, S.K.: When are surface plasmon polaritons excited in the Kretschmann–Raether configuration? Sci. Rep. 5, 9929 (2015)

    Article  Google Scholar 

  24. Ahmadi, H., Heidarzadeh, H., Taghipour, A., Rostami, A., Baghban, H., Dolatyari, M., Rostami, G.: Evaluation of single virus detection through optical biosensor based on microsphere resonator. Opt. Int. J. Light Electron Opt. 125(14), 3599–3602 (2014)

    Article  Google Scholar 

  25. Michel, D., Xiao, F., Alameh, K.: A compact, flexible fiber-optic surface plasmon resonance sensor with changeable sensor chips. Sens. Actuators B Chem. 246, 258–261 (2017)

    Article  Google Scholar 

  26. El-Gohary, S.H., Eom, S., Lee, S.Y., Byun, K.M.: Dispersion curve-based sensitivity engineering for enhanced surface plasmon resonance detection. Opt. Commun. 370, 299–305 (2016)

    Article  Google Scholar 

  27. Spackova, B., Wrobel, P., Bockova, M., Homola, J.: Optical biosensors based on plasmonic nanostructures: a review. Proc. IEEE 104(12), 2380–2408 (2016)

    Article  Google Scholar 

  28. Farmani, A., Yavarian, M., Alighanbari, A., Miri, M., Sheikhi, M.H.: Tunable graphene plasmonic y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing. Appl. Opt. 56(32), 8931–8940 (2017)

    Article  Google Scholar 

  29. Karimi, A., Zarifkar, A., Miri, M.: Design of ultra-compact tunable fractional-order temporal differentiators based on hybrid-plasmonic phase-shifted bragg gratings. Appl. Opt. 57(25), 7402–7409 (2018)

    Article  Google Scholar 

  30. Nguyen, H., Park, J., Kang, S., Kim, M.: Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15(5), 10481–10510 (2015)

    Article  Google Scholar 

  31. Hlubina, P., Ciprian, D.: Spectral phase shift of surface plasmon resonance in the kretschmann configuration: theory and experiment. Plasmonics 12(4), 1071–1078 (2017)

    Article  Google Scholar 

  32. Janjan, B., Fathi, D., Miri, M., Ghaffari-Miab, M.: Ultra-wideband high-speed mach–zehnder switch based on hybrid plasmonic waveguides. Appl. Opt. 56(6), 1717–1723 (2017)

    Article  Google Scholar 

  33. Wong, C.L., Olivo, M.: Surface plasmon resonance imaging sensors: a review. Plasmonics 9(4), 809–824 (2014)

    Article  Google Scholar 

  34. Liedberg, B., Nylander, C., Lunström, I.: Surface plasmon resonance for gas detection and bio-sensing. Sens. Actuators 4, 299–304 (1983)

    Article  Google Scholar 

  35. Xiang, Y., Zhu, J., Wu, L., You, Q., Ruan, B., Dai, X.: Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene. IEEE Photon. J. 10(1), 1–7 (2018)

    Article  Google Scholar 

  36. Srivastava, T., Purkayastha, A., Jha, R.: Graphene based surface plasmon resonance gas sensor for terahertz. Opt. Quant. Electron. 48(6), 334 (2016)

    Article  Google Scholar 

  37. Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 160(1), 623–631 (2011)

    Article  Google Scholar 

  38. Wu, L., Chu, H., Koh, W., Li, E.: Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18(14), 14395–14400 (2010)

    Article  Google Scholar 

  39. Baqir, M., Farmani, A., Fatima, T., Raza, M., Shaukat, S., Mir, A.: Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57(31), 9447–9454 (2018)

    Article  Google Scholar 

  40. Poushi, S.K., Eskandari, M., Nejand, B.A., Ahmadi, V.: Numerical calculation of plasmonic field absorption enhancement in CdSe-quantum dot sensitized ZnO nano-rods by Ag nanoparticle periodic arrays. Opt. Mater. 62, 90–94 (2016)

    Article  Google Scholar 

  41. Mishra, S.K., Bhardwaj, S., Gupta, B.D.: Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas. IEEE Sens. J. 15(2), 1235–1239 (2015)

    Article  Google Scholar 

  42. Arora, P., Talker, E., Mazurski, N., Levy, U.: Dispersion engineering with plasmonic nanostructures for enhanced surface plasmon resonance sensing. Sci. Rep. 8(1), 9060 (2018)

    Article  Google Scholar 

  43. Chorsi, H.T., Lee, Y., Alu, A., Zhang, J.X.: Tunable plasmonic substrates with ultra-high q-factor resonances. Sci. Rep. 7(1), 15985 (2017)

    Article  Google Scholar 

  44. Lu, X., Zhang, T., Wan, R., Xu, Y., Zhao, C., Guo, S.: Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface. Opt. Express 26(8), 10179–10187 (2018)

    Article  Google Scholar 

  45. Farmani, A., Mir, A., Sharifpour, Z.: Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018)

    Article  Google Scholar 

  46. Farmani, A., Miri, M., Sheikhi, M.H.: Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure. Opt. Commun. 391, 68–76 (2017)

    Article  Google Scholar 

  47. Fotouhi, B., Ahmadi, V., Faramarzi, V.: Nano-plasmonic-based structures for DNA sequencing. Opt. Lett. 41(18), 4229–4232 (2016)

    Article  Google Scholar 

  48. Derakhshi, M., Fathi, D.: Terahertz plasmonic switch based on periodic array of graphene/silicon. Sci. Iran. 24(6), 3452–3457 (2017)

    Google Scholar 

  49. Fard, S.K., Darbari, S., Ahmadi, V.: Electro-plasmonic gas sensing based on reduced graphene oxide/ag nanoparticle hetero-structure. IEEE Sens. J. 18(14), 5770–5777 (2018)

    Article  Google Scholar 

  50. Gosciniak, J., Bozhevolnyi, S.I.: Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides. Sci. Rep. 3, 1803 (2013)

    Article  Google Scholar 

  51. Nejad, H.E., Mir, A., Farmani, A.: Super sensitive and tunable nano-biosensor for cancer detection. IEEE Sens. J. 19(13), 4874–4881 (2019)

    Article  Google Scholar 

  52. Yuan, Y., Yu, X., Ouyang, Q., Shao, Y., Song, J., Qu, J., Yong, K.-T.: Highly anisotropic black phosphorous-graphene hybrid architecture for ultra sensitive plasmonic bio-sensing: theoretical insight. 2D Mater. 5(2), 025015 (2018)

    Article  Google Scholar 

  53. Farmani, A., Mir, A., Bazgir, M., Zarrabi, F.B.: Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in THz range: numerical study. Phys. E 104, 233–240 (2018)

    Article  Google Scholar 

  54. Bahrami, F., Aitchison, J.S., Mojahedi, M.: Dual-wavelength spectroscopy of a metallic grating-coupled surface plasmon resonance biosensor. IEEE Photon. J. 7(2), 1–7 (2015)

    Article  Google Scholar 

  55. Hlubina, P., Ciprian, D.: Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment. Plasmonics 12(4), 1071–1078 (2017)

    Article  Google Scholar 

  56. Mirjalili, S.M., Abedi, K., Mirjalili, S.A.: Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide. Optik 124(23), 5989–5993 (2013)

    Article  Google Scholar 

  57. Keshavarzi, R., Akhlaghi, M., Emami, F.: Binary PSO algorithm assisted to investigate the optical sensor based plasmonic nano-bi-domes. Optik 127(19), 7670–7675 (2016)

    Article  Google Scholar 

  58. Kennedy, J., & Eberhart, R.: Particle swarm optimization (PSO). In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)

  59. Sun, Y., Cai, H., Wang, X., Zhan, S.: Optimization methodology for structural multi parameter surface plasmon resonance sensors in different modulation modes based on particle swarm optimization. Opt. Commun. 431, 142–150 (2019)

    Article  Google Scholar 

  60. Yang, X.-S.: Optimization and metaheuristic algorithms in engineering. In: Yang, X.S., Gandomi, A.H., Talatahari, S., Alavi, A.H. (eds.) Metaheursitics in water, geotechnical and transport engineering, pp. 1–23. Elsevier, New York (2013)

    Google Scholar 

  61. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B6(12), 4370 (1972)

    Article  Google Scholar 

  62. Palik, E.D.: Handbook of optical constants of solids, vol. 3. Academic Press, New York (1998)

    Google Scholar 

  63. Wong, C.L., Olivo, M.: Surface plasmon resonance imaging sensors: a review. Plasmonics 9(4), 809–824 (2014)

    Article  Google Scholar 

  64. Chlebus, R., Chylek, J., Ciprian, D., Hlubina, P.: Surface plasmon resonance based measurement of the dielectric function of a thin metal film. Sensors 18(11), 3693 (2018)

    Article  Google Scholar 

  65. Manera, M.G., Montagna, G., Ferreiro-Vila, E., Gonzalez-Garcıa, L., SanchezValencia, J., Gonzalez-Elipe, A.R., Cebollada, A., Garcia-Martin, J.M., Garcıa-Martın, A., Armelles, G., Rella, R.: Enhanced gas sensing performance of Tio2 functionalized magneto-optical SPR sensors. J. Mater. Chem. 21(40), 16049–16056 (2011)

    Article  Google Scholar 

  66. Arora, P., Talker, E., Mazurski, N., Levy, U.: Dispersion engineering with plasmonic nanostructures for enhanced surface plasmon resonance sensing. Sci. Rep. 8(1), 9060 (2018)

    Article  Google Scholar 

  67. Lan, G., Gao, Y.: Surface plasmon resonance sensor with high sensitivity and wide dynamic range. IEEE Sens. J. 18(13), 5329–5333 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Zarifkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoosoltani, N., Zarifkar, A. & Farmani, A. Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J Comput Electron 18, 1354–1364 (2019). https://doi.org/10.1007/s10825-019-01391-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01391-7

Keywords

Navigation