Skip to main content
Log in

Tuning spontaneous emission in BInGaAs/GaAs QWs by varying the growth temperature: above 1.2 µm emission and solar cells application

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, BInGaAs single quantum wells have been grown by metal–organic vapor phase epitaxy at different growth temperatures, on a GaAs substrate. The incorporation of the boron and the indium increases with decreasing the growth temperature. Structures have been characterized using the atomic force microscopy (AFM) and the static photoluminescence (PL) between 10 and 300 K. AFM measurements show that the growth temperature modifies the growth mode which affects the PL response. The optical study predicts that the low growth temperature is the best condition to improve the quality of the investigated structure. The morphological study shows a surface roughness of less than 10 Å with the formation of 2D islets, at the lowest growth temperature. The PL peak position, the full width at half maximum, and the PL intensity as a function of the temperature have shown an abnormal evolution as a result of the localization phenomenon. It is due to the alloy fluctuation (the thickness and the composition) related to growth conditions. The optical study showed a reduction in the localized states related to the sample grown at the high growth temperature. The localized states’ ensemble model has been introduced for a better quantitative re-understanding. The proposed structure proved its capacity for a dual application: telecom wavelengths and multijunction solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aleksiejūnas, R., Nomeika, K., Kravcov, O., Nargelas, S., Kuritzky, L., Lynsky, C., Nakamura, S., Weisbuch, C., Speck, J.S.: Impact of alloy-disorder-induced localization on hole diffusion in highly excited c-plane and m-plane (In, Ga)N quantum wells. J. Phys. Rev. Appl. 14, 054043 (2020)

    Article  ADS  Google Scholar 

  • Bao, W., Su, Z., Zheng, C., Ning, J., Xu, S.: Carrier localization effects in InGaN/GaN multiple-quantum-wells LED nanowires: luminescence quantum efficiency improvement and “Negative” thermal activation energy. J. Sci. Rep 6, 34545 (2016). https://doi.org/10.1038/srep34545

    Article  ADS  Google Scholar 

  • Deng, Z., Ning, J., Zhicheng, Su., Shijie, Xu., Xing, Z., Wang, R., Shulong, Lu., Dong, J., Zhang, B., Yang, H.: Structural dependences of localization and recombination of photogenerated carriers in the top GaInP subcells of GaInP/GaAs double-junction tandem solar cells. ACS Appl. Mater. Interfaces 7, 690–695 (2015)

    Article  Google Scholar 

  • Dimroth, F., Howard, A., Shurtleff, J.K., Stringfellow, G.B.: Influence of Sb, Bi, Tl, and B on the incorporation of N in GaAs. J. Appl. Phys. 91, 3687 (2002)

    Article  ADS  Google Scholar 

  • Dumont, H., et al.: Surface segregation of boron in BxGa1−xAs/GaAs epilayers studied by x-ray photoelectron spectroscopy and atomic force microscopy. Appl. Phys. Lett. 82, 1830 (2003)

    Article  ADS  Google Scholar 

  • Geisz, J.F., et al.: BGaInAs alloys lattice matched to GaAs. J. Appl. Phys. Lett. 76, 1443–1445 (2000)

    Article  ADS  Google Scholar 

  • Geisz, J.F., et al.: Epitaxial growth of BGaAs and BGaInAs by MOCVD. J. Crystal Growth 225, 372–376 (2001)

    Article  ADS  Google Scholar 

  • Gottschalch, V., Leibiger, G., Bendorf, G.: MOVPE growth of BxGa1−xAs, BxGa1−x−yInyAs, and BxAl1−xAs alloys on (0 0 1) GaAs. J. Crystal Growth 248, 468–473 (2003)

    Article  ADS  Google Scholar 

  • Gupta, V.K., Koch, M.W., et al.: Molecular beam epitaxial growth of BGaAs ternary compound. J. Electron. Mater. 29, 1387–1391 (2000)

    Article  ADS  Google Scholar 

  • Hamila, R., et al.: Growth temperature effects on boron incorporation and optical properties of BGaAs/GaAs grown by MOCVD. J. Alloys Compd. 506, 10–13 (2010)

    Article  Google Scholar 

  • Haratizadeh, E.A.H.: Investigation of the localization effect in InGaNAs/GaAs SQWs using the LSE model. J. Phys. Status Solidi B 247, 170–175 (2010)

    Article  ADS  Google Scholar 

  • Hart, G.L.W., Zunger, A.: Electronic structure of BAs and boride III-V alloys. J. Phys. Rev. B 62, 13522 (2000)

    Article  ADS  Google Scholar 

  • Hidouri, T., Saidi, F., Maaref, H., Rodriguez, Ph., Auvray, L.: LSE investigation of the thermal effect on band gap energy and thermodynamic parameters of BInGaAs/GaAs Single Quantum Well. J. Optic. Mater. 62, 267–272 (2016a)

    Article  ADS  Google Scholar 

  • Hidouri, T., Saidi, F., Maaref, H., Rodriguez, Ph., Auvray, L.: Localized state exciton model investigation of B-content effect on optical properties of BGaAs/GaAs epilayers grown by MOCVD. J. Vacuum 132, 10–15 (2016b)

    Article  ADS  Google Scholar 

  • Hidouri, T., et al.: Investigation of the localization phenomenon in quaternary BInGaAs/GaAs for optoelectronic applications. J. Superlattices Microstruct 103, 386–394 (2017)

    Article  ADS  Google Scholar 

  • Hidouri, T., Nasr, S., Mal, I., Samajdar, D.P., Saidi, F., Hamila, R., Maaref, H.: BGaAs strain compensation layer in novel BGaAs/InGaAs/BGaAs heterostructure: Exceptional tunability. J. Appl. Surf. Sci. 524, 146573 (2020)

    Article  Google Scholar 

  • Hidouri, T., et al.: Engineering of carrier localization in BGaAs SQW for novel intermediate band solar cells: Thermal annealing effect. J. Solar Energy 199, 183–191 (2020)

    Article  ADS  Google Scholar 

  • Leibiger, G., Krahmer, C., Bauer, J., Herrnberger, H., Gottschalch, V.: Solar cells with (BGaIn)As and (InGa)(NAs) as absorption layers. J. Crystal Growth 272, 732–738 (2004)

    Article  ADS  Google Scholar 

  • Li, Q., Xu, S.J., Cheng, W.C., Xie, M.H., Tong, S.Y.: Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys. J. Phys. Lett. 79, 1810–1812 (2001)

    ADS  Google Scholar 

  • Li, Q., Xu, S.J., Xie, M.H., Tong, S.Y.: A model for steady-state luminescence of localized-state ensemble. J. Europhys. Lett. 71, 994–1000 (2005a)

    Article  ADS  Google Scholar 

  • Li, Q., Xu, S.J., Xie, M.H., Tong, S.Y.: Origin of the “S-shaped” temperature dependence of luminescent peaks from semiconductors. J. Phys. Conden. Matter 17, 4853–4858 (2005b)

    Article  ADS  Google Scholar 

  • Li, C., Stokes, E.B., Armour, E.: Optical characterization of carrier localization, carrier transportation and carrier recombination in blue-emitting InGaN/GaN MQWs. ECS J. Solidstate Sci. Technol. 4, R10–R13 (2015)

    Article  Google Scholar 

  • Mączko, H.S., Kudrawiec, R., Gladysiewicz, M.: Optical gain sensitivity of BGaAs/GaP quantum wells to admixtures of group III and V atoms. J. Opt. Mater. Express 10, 2962–2972 (2020)

    Article  ADS  Google Scholar 

  • Olsthoorn, S.M., Driessen, F.A.J.M., Eijkelenboom, A.P.A.M., Giling, L.J.: Photoluminescence and photoluminescence excitation spectroscopy of Al048In052As. J. Appl. Phys. 73, 7798–7803 (1993)

    Article  ADS  Google Scholar 

  • Pūkienė, S., Karaliūnas, M., Jasinskas, A., Dudutienė, E., Čechavičius, B., Devenson, J., Butkutė, R., Udal, A., Valušis, G.: Enhancement of photoluminescence of GaAsBi quantum wells by parabolic design of AlGaAs barriers. Nanotechnology 30, 455001 (2019)

    Article  ADS  Google Scholar 

  • Qiua, Y.N, Rorison, J.M, Sun, HD., Calvez, S., Dawson, M.D, Bryce, A.C. : Influence of composition diffusion on the band structures of InGaNAs∕GaAs quantum wells investigated by the band-anticrossing model. J. Appl. Phys. Lett. 87, 231112 (2005)

    Article  ADS  Google Scholar 

  • Saidi, F., et al.: Structural and optical study of BxInyGa1− x− yAs/GaAs and InyGa1− yAs/GaAs QW’s grown by MOCVD. J. Alloys Compd. 491, 45–48 (2010)

    Article  Google Scholar 

  • Wei, F., Xu, S.J., Li, Q.: Spontaneous emission mechanisms of GaInAsN⁄GaAs quantum dot systems. J. Appl. Phys. 100, 124311 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research group program under Grant Number RGP. 2/203/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Hidouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidouri, T., Saidi, F. & Al-Shahri, B.M. Tuning spontaneous emission in BInGaAs/GaAs QWs by varying the growth temperature: above 1.2 µm emission and solar cells application. Opt Quant Electron 53, 532 (2021). https://doi.org/10.1007/s11082-021-03160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03160-y

Keywords

Navigation