Skip to main content
Log in

Perovskite/silicon tandem solar cells–compositions for improved stability and power conversion efficiency

  • Perspectives
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Perovskite/Silicon Tandem Solar Cells (PSTSCs) represent an emerging opportunity to compete with industry-standard single junction crystalline silicon (c-Si) solar cells. The maximum power conversion efficiency (PCE) of single junction cells is set by the Shockley–Queisser (SQ) limit (33.7%). However, tandem cells can expand this value to ~ 45% by utilising two stacked solar cells to harvest the solar spectrum more efficiently. 33.9% PCE has already been achieved with PSTSCs. This perspective analyses recent advances in PSTSC technology, with an emphasis on optimal perovskite composition, the problem and mitigation of light-induced halide phase segregation, self-assembled hole transporting monolayers and additives that can improve and stabilise the perovskite. Top-performing compositions show three cationic components (Cs+, FA+, Pb2+) and three anionic (I, Br, Cl) with a bandgap between 1.55 and 1.77 eV and a theoretical maximum of 1.73 eV (717 nm). Anionic additives such as (Br3) and SCN reduce trap states and segregation. 2D-perovskite grain boundary interfaces are created with cationic alkylammonium additives such as methyl-phenethylammonium (MPEA) and result in improved performance. 2-, 3- or 4-terminal devices with a (partly) textured silicon heterojunction (SHJ) bottom cell are ideal. An ultra-thin interfacial recombination layer (~ 5 nm) of indium tin oxide (ITO) or indium zinc oxide (IZO) containing a carbazole-based hole transporting self-assembled monolayer (Me-4PACz) is used for optimal 2-terminal tandem devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2020 American Chemical Society [24]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Reproduced from Energy Environ. Sci., 2023, 10.1039.D2EE04007G, with permission from the Royal Society of Chemistry[97]

Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

2 T, 3 T, 4 T:

Two, three, four Terminal

a-Si:

Amorphous silicon

a-Si:H:

Hydrogenated amorphous silicon

CIGS:

Copper Indium Gallium diSelenide

c-Si:

Crystalline Silicon

CTL:

Charge Transport Layer

Cz:

Czochralski

ETL:

Electron Transport Layer

EQE:

External Quantum Efficiency

FF:

Fill Factor

FZ:

Float-Zone

HTL:

Hole Transport Layer

IBC:

Interdigitated Back Contact

IR:

Infrared

Jsc:

Short-Circuit Current Density

mc-Si:

Multicrystalline silicon

nc-Si:

Nanocrystalline silicon

NIR:

Near-IR

NREL:

National Renewable Energy Laboratory

PCE:

Power Conversion Efficiency

PERC:

Passivated Emitter Rear Cell

PL:

Photoluminescence

PSC:

Perovskite Solar Cell

PSTSC:

Perovskite/Si Tandem Solar Cell

PV:

Photovoltaic

RL:

Recombination Layer

SAM:

Self-Assembling Monolayer

SHJ:

Silicon Heterojunction

SQ:

Shockley-Queisser

TCO:

Transparent Conductive Oxide

TJ:

Tunnel Junction

TSC:

Tandem Solar Cell

UV:

Ultraviolet

Voc:

Open-Circuit Voltage

2PACz:

(2-(9H-carbazol-9-yl)ethyl)phosphonic acid

4-MPEA:

4-Methylphenethylammonium

ADDC:

Ammonium diethyldithiocarbamate

BA:

Butylammonium

BHC:

Benzylhydrazine hydrochloride

FA:

Formamidinium—HC(NH2)2

ITO:

Indium doped Tin Oxide

MA:

Methylammonium—CH3NH3

MeO-4PACz:

(4-(3,6-Dimethoxy-9H-carbazol-9-yl)butyl)phosphonic acid

Me-4PACz:

4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl]phosphonic Acid

PCBM:

[6, 6]-phenyl-C61-butyric acid methyl ester

PEA:

Phenethylammonium

PEDOT-PSS:

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate

PI :

Piperazinium iodide

PTAA:

Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine

spiro-OMeTAD:

2,2′7,7′-Tetrakis(N,N-di-p-methoxyphenyl amine)-9,9′-spirobifluorene

TEA:

Thiophene-ethylammonium

TMA:

Thiophene-methylammonium

TPA:

Trimethylphenylammonium

ZTO:

Zinc doped Tin Oxide

References

  1. Khan, F., Al-Ahmed, A., & Al-Sulaiman, F. A. (2021). Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters. Renewable and Sustainable Energy Reviews, 140, 110753. https://doi.org/10.1016/j.rser.2021.110753

    Article  Google Scholar 

  2. Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  3. Solar Energy Technologies Office. (2023, January 26). Solar Photovoltaic Cell Basics [US Gov website]. Office of Energy Efficiency & Renewable Energy. https://www.energy.gov/eere/solar/solar-photovoltaic-cell-basics#:~:text=Silicon,of%20the%20modules%20sold%20today.

  4. Shockley, W., & Queisser, H. J. (1961). Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 32(3), 510–519. https://doi.org/10.1063/1.1736034

    Article  CAS  Google Scholar 

  5. Richter, A., Hermle, M., & Glunz, S. W. (2013). Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells. IEEE Journal of Photovoltaics, 3(4), 1184–1191. https://doi.org/10.1109/JPHOTOV.2013.2270351

    Article  Google Scholar 

  6. National Renewable Energy Laboratory. (2023, October). Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html

  7. Leijtens, T., Bush, K. A., Prasanna, R., & McGehee, M. D. (2018). Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature Energy, 3(10), 828–838. https://doi.org/10.1038/s41560-018-0190-4

    Article  CAS  Google Scholar 

  8. Futscher, M. H., & Ehrler, B. (2016). Efficiency Limit of Perovskite/Si Tandem Solar Cells. ACS Energy Letters, 1(4), 863–868. https://doi.org/10.1021/acsenergylett.6b00405

    Article  CAS  Google Scholar 

  9. Li, X., Xu, Q., Yan, L., Ren, C., Shi, B., Wang, P., Mazumdar, S., Hou, G., Zhao, Y., & Zhang, X. (2021). Silicon heterojunction-based tandem solar cells: Past, status, and future prospects. Nanophotonics, 10(8), 2001–2022. https://doi.org/10.1515/nanoph-2021-0034

    Article  CAS  Google Scholar 

  10. Li, H., & Zhang, W. (2020). Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews, 120, 9835.

    Article  CAS  PubMed  Google Scholar 

  11. Brinkmann, K. O., Becker, T., Zimmermann, F., Kreusel, C., Gahlmann, T., Theisen, M., Haeger, T., Olthof, S., Tückmantel, C., Günster, M., Maschwitz, T., Göbelsmann, F., Koch, C., Hertel, D., Caprioglio, P., Peña-Camargo, F., Perdigón-Toro, L., Al-Ashouri, A., Merten, L., & Riedl, T. (2022). Perovskite–organic tandem solar cells with indium oxide interconnect. Nature, 604(7905), 280–286. https://doi.org/10.1038/s41586-022-04455-0

    Article  CAS  PubMed  Google Scholar 

  12. Brakkee, R., & Williams, R. M. (2020). Minimizing Defect States in Lead Halide Perovskite Solar Cell Materials. Applied Sciences, 10(9), 3061. https://doi.org/10.3390/app10093061

    Article  CAS  Google Scholar 

  13. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r

    Article  CAS  PubMed  Google Scholar 

  14. Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H., & Park, N.-G. (2020). High-Efficiency Perovskite Solar Cells. Chemical Reviews, 120(15), 7867–7918. https://doi.org/10.1021/acs.chemrev.0c00107

    Article  CAS  PubMed  Google Scholar 

  15. Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J. E., Grätzel, M., & Park, N.-G. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1), 591. https://doi.org/10.1038/srep00591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., & Huang, J. (2014). Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Advanced Materials, 26(37), 6503–6509. https://doi.org/10.1002/adma.201401685

    Article  CAS  PubMed  Google Scholar 

  17. Bi, C., Wang, Q., Shao, Y., Yuan, Y., Xiao, Z., & Huang, J. (2015). Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nature Communications, 6(1), 7747. https://doi.org/10.1038/ncomms8747

    Article  CAS  PubMed  Google Scholar 

  18. Jeng, J.-Y., Chen, K.-C., Chiang, T.-Y., Lin, P.-Y., Tsai, T.-D., Chang, Y.-C., Guo, T.-F., Chen, P., Wen, T.-C., & Hsu, Y.-J. (2014). Nickel Oxide Electrode Interlayer in CH 3 NH 3 PbI 3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells. Advanced Materials, 26(24), 4107–4113. https://doi.org/10.1002/adma.201306217

    Article  CAS  PubMed  Google Scholar 

  19. Ossila. (2023, March 1). Perovskites and Perovskite Solar Cells: An Introduction. Ossila.Com. https://www.ossila.com/en-eu/pages/perovskites-and-perovskite-solar-cells-an-introduction

  20. Guillemoles, J.-F., Kirchartz, T., Cahen, D., & Rau, U. (2019). Guide for the perplexed to the Shockley-Queisser model for solar cells. Nature Photonics, 13(8), 501–505. https://doi.org/10.1038/s41566-019-0479-2

    Article  CAS  Google Scholar 

  21. Williams, R. M. (Director). (2020). The Shockley-Queisser Limit: Theoretical limits of solar cells and how to surpass them. https://youtu.be/KsP90hT41t4

  22. Vos, A. D. (1980). Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics D: Applied Physics, 13(5), 839–846. https://doi.org/10.1088/0022-3727/13/5/018

    Article  Google Scholar 

  23. Ho-Baillie, A. W. Y., Zheng, J., Mahmud, M. A., Ma, F.-J., McKenzie, D. R., & Green, M. A. (2021). Recent progress and future prospects of perovskite tandem solar cells. Applied Physics Reviews, 8(4), 041307. https://doi.org/10.1063/5.0061483

    Article  CAS  Google Scholar 

  24. Tockhorn, P., Wagner, P., Kegelmann, L., Stang, J.-C., Mews, M., Albrecht, S., & Korte, L. (2020). Three-Terminal Perovskite/Silicon Tandem Solar Cells with Top and Interdigitated Rear Contacts. ACS Applied Energy Materials, 3(2), 1381–1392. https://doi.org/10.1021/acsaem.9b01800

    Article  CAS  Google Scholar 

  25. Rienäcker, M., Warren, E. L., Schnabel, M., Schulte-Huxel, H., Niepelt, R., Brendel, R., Stradins, P., Tamboli, A. C., & Peibst, R. (2019). Back-contacted bottom cells with three terminals: Maximizing power extraction from current-mismatched tandem cells. Progress in Photovoltaics: Research and Applications, 27(5), 410–423. https://doi.org/10.1002/pip.3107

    Article  CAS  Google Scholar 

  26. Schuster, O., Wientjes, P., Shrestha, S., Levchuk, I., Sytnyk, M., Matt, G. J., Osvet, A., Batentschuk, M., Heiss, W., Brabec, C. J., Fauster, T., & Niesner, D. (2020). Looking beyond the Surface: The Band Gap of Bulk Methylammonium Lead Iodide. Nano Letters, 20(5), 3090–3097. https://doi.org/10.1021/acs.nanolett.9b05068

    Article  CAS  PubMed  Google Scholar 

  27. Zhu, H., Pan, L., Eickemeyer, F. T., Hope, M. A., Ouellette, O., Alanazi, A. Q. M., Gao, J., Baumeler, T. P., Li, X., Wang, S., Zakeeruddin, S. M., Liu, Y., Emsley, L., & Grätzel, M. (2022). Efficient and Stable Large Bandgap MAPbBr 3 Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V. ACS Energy Letters, 7(3), 1112–1119. https://doi.org/10.1021/acsenergylett.1c02431

    Article  CAS  Google Scholar 

  28. Cheacharoen, R., Boyd, C. C., Burkhard, G. F., Leijtens, T., Raiford, J. A., Bush, K. A., Bent, S. F., & McGehee, M. D. (2018). Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustainable Energy & Fuels, 2(11), 2398–2406. https://doi.org/10.1039/C8SE00250A

    Article  CAS  Google Scholar 

  29. Martins, J., Emami, S., Madureira, R., Mendes, J., Ivanou, D., & Mendes, A. (2020). Novel laser-assisted glass frit encapsulation for long-lifetime perovskite solar cells. Journal of Materials Chemistry A, 8(38), 20037–20046. https://doi.org/10.1039/D0TA05583B

    Article  CAS  Google Scholar 

  30. Xu, T., Chen, Y., & Chen, Q. (2023). Improving intrinsic stability for perovskite/silicon tandem solar cells. Science China Physics, Mechanics & Astronomy, 66(1), 217305. https://doi.org/10.1007/s11433-022-1959-4

    Article  CAS  Google Scholar 

  31. Hoke, E. T., Slotcavage, D. J., Dohner, E. R., Bowring, A. R., Karunadasa, H. I., & McGehee, M. D. (2015). Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science, 6(1), 613–617. https://doi.org/10.1039/C4SC03141E

    Article  CAS  PubMed  Google Scholar 

  32. Fu, F., Li, J., Yang, T. C., Liang, H., Faes, A., Jeangros, Q., Ballif, C., & Hou, Y. (2022). Monolithic Perovskite-Silicon Tandem Solar Cells: From the Lab to Fab? Advanced Materials, 34(24), 2106540. https://doi.org/10.1002/adma.202106540

    Article  CAS  Google Scholar 

  33. Shi, L., Bucknall, M. P., Young, T. L., Zhang, M., Hu, L., Bing, J., Lee, D. S., Kim, J., Wu, T., Takamure, N., McKenzie, D. R., Huang, S., Green, M. A., & Ho-Baillie, A. W. Y. (2020). Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science, 368(6497), eaba2412. https://doi.org/10.1126/science.aba2412

    Article  CAS  PubMed  Google Scholar 

  34. Essig, S., Allebé, C., Remo, T., Geisz, J. F., Steiner, M. A., Horowitz, K., Barraud, L., Ward, J. S., Schnabel, M., Descoeudres, A., Young, D. L., Woodhouse, M., Despeisse, M., Ballif, C., & Tamboli, A. (2017). Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nature Energy, 2(9), 17144. https://doi.org/10.1038/nenergy.2017.144

    Article  CAS  Google Scholar 

  35. Papež, N., Dallaev, R., Ţălu, Ş, & Kaštyl, J. (2021). Overview of the Current State of Gallium Arsenide-Based Solar Cells. Materials, 14(11), 3075. https://doi.org/10.3390/ma14113075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mailoa, J. P., Bailie, C. D., Johlin, E. C., Hoke, E. T., Akey, A. J., Nguyen, W. H., McGehee, M. D., & Buonassisi, T. (2015). A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Applied Physics Letters, 106(12), 121105. https://doi.org/10.1063/1.4914179

    Article  CAS  Google Scholar 

  37. Bailie, C. D., Christoforo, M. G., Mailoa, J. P., Bowring, A. R., Unger, E. L., Nguyen, W. H., Burschka, J., Pellet, N., Lee, J. Z., Grätzel, M., Noufi, R., Buonassisi, T., Salleo, A., & McGehee, M. D. (2015). Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy & Environmental Science, 8(3), 956–963. https://doi.org/10.1039/C4EE03322A

    Article  CAS  Google Scholar 

  38. Albrecht, S., Saliba, M., Correa Baena, J. P., Lang, F., Kegelmann, L., Mews, M., Steier, L., Abate, A., Rappich, J., Korte, L., Schlatmann, R., Nazeeruddin, M. K., Hagfeldt, A., Grätzel, M., & Rech, B. (2016). Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy & Environmental Science, 9(1), 81–88. https://doi.org/10.1039/C5EE02965A

    Article  CAS  Google Scholar 

  39. Hawash, Z., Ono, L. K., Raga, S. R., Lee, M. V., & Qi, Y. (2015). Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films. Chemistry of Materials, 27(2), 562–569. https://doi.org/10.1021/cm504022q

    Article  CAS  Google Scholar 

  40. Abate, A., Leijtens, T., Pathak, S., Teuscher, J., Avolio, R., Errico, M. E., Kirkpatrik, J., Ball, J. M., Docampo, P., McPherson, I., & Snaith, H. J. (2013). Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 15(7), 2572. https://doi.org/10.1039/c2cp44397j

    Article  CAS  PubMed  Google Scholar 

  41. Xu, J., Voznyy, O., Comin, R., Gong, X., Walters, G., Liu, M., Kanjanaboos, P., Lan, X., & Sargent, E. H. (2016). Crosslinked Remote-Doped Hole-Extracting Contacts Enhance Stability under Accelerated Lifetime Testing in Perovskite Solar Cells. Advanced Materials, 28(14), 2807–2815. https://doi.org/10.1002/adma.201505630

    Article  CAS  PubMed  Google Scholar 

  42. Bush, K. A., Palmstrom, A. F., Yu, Z. J., Boccard, M., Cheacharoen, R., Mailoa, J. P., McMeekin, D. P., Hoye, R. L. Z., Bailie, C. D., Leijtens, T., Peters, I. M., Minichetti, M. C., Rolston, N., Prasanna, R., Sofia, S., Harwood, D., Ma, W., Moghadam, F., Snaith, H. J., & McGehee, M. D. (2017). 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2(4), 17009. https://doi.org/10.1038/nenergy.2017.9

    Article  CAS  Google Scholar 

  43. You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y., Chang, W.-H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., De Marco, N., & Yang, Y. (2016). Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 11(1), 75–81. https://doi.org/10.1038/nnano.2015.230

    Article  CAS  PubMed  Google Scholar 

  44. Slotcavage, D. J., Karunadasa, H. I., & McGehee, M. D. (2016). Light-Induced Phase Segregation in Halide-Perovskite Absorbers. ACS Energy Letters, 1(6), 1199–1205. https://doi.org/10.1021/acsenergylett.6b00495

    Article  CAS  Google Scholar 

  45. Yao, Y., Hang, P., Li, B., Hu, Z., Kan, C., Xie, J., Wang, Y., Zhang, Y., Yang, D., & Yu, X. (2022). Phase-Stable Wide-Bandgap Perovskites for Four-Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency. Small (Weinheim an der Bergstrasse, Germany), 18(38), 2203319. https://doi.org/10.1002/smll.202203319

    Article  CAS  Google Scholar 

  46. Unger, E. L., Kegelmann, L., Suchan, K., Sörell, D., Korte, L., & Albrecht, S. (2017). Roadmap and roadblocks for the band gap tunability of metal halide perovskites. Journal of Materials Chemistry A, 5(23), 11401–11409. https://doi.org/10.1039/C7TA00404D

    Article  CAS  Google Scholar 

  47. Anaya, M., Lozano, G., Calvo, M. E., & Míguez, H. (2017). ABX3 Perovskites for Tandem Solar Cells. Joule, 1(4), 769–793. https://doi.org/10.1016/j.joule.2017.09.017

    Article  CAS  Google Scholar 

  48. De Bastiani, M., Dell’Erba, G., Gandini, M., D’Innocenzo, V., Neutzner, S., Kandada, A. R. S., Grancini, G., Binda, M., Prato, M., Ball, J. M., Caironi, M., & Petrozza, A. (2016). Ion Migration and the Role of Preconditioning Cycles in the Stabilization of the JV Characteristics of Inverted Hybrid Perovskite Solar Cells. Advanced Energy Materials, 6(2), 1501453. https://doi.org/10.1002/aenm.201501453

    Article  CAS  Google Scholar 

  49. Chen, S., Xiao, X., Gu, H., & Huang, J. (2021). Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Science Advances, 7(10), eabe8130. https://doi.org/10.1126/sciadv.abe8130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, J., De Bastiani, M., Aydin, E., Harrison, G. T., Gao, Y., Pradhan, R. R., Eswaran, M. K., Mandal, M., Yan, W., Seitkhan, A., Babics, M., Subbiah, A. S., Ugur, E., Xu, F., Xu, L., Wang, M., Rehman, A. U. R., Razzaq, A., Kang, J., & De Wolf, S. (2022). Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science, 377(6603), 302–306. https://doi.org/10.1126/science.abn8910

    Article  CAS  PubMed  Google Scholar 

  51. Yang, G., Ni, Z., Yu, Z. J., Larson, B. W., Yu, Z., Chen, B., Alasfour, A., Xiao, X., Luther, J. M., Holman, Z. C., & Huang, J. (2022). Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nature Photonics, 16(8), 588–594. https://doi.org/10.1038/s41566-022-01033-8

    Article  CAS  Google Scholar 

  52. Mahesh, S., Ball, J. M., Oliver, R. D. J., McMeekin, D. P., Nayak, P. K., Johnston, M. B., & Snaith, H. J. (2020). Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy & Environmental Science, 13(1), 258–267. https://doi.org/10.1039/C9EE02162K

    Article  CAS  Google Scholar 

  53. Ni, Z., Jiao, H., Fei, C., Gu, H., Xu, S., Yu, Z., Yang, G., Deng, Y., Jiang, Q., Liu, Y., Yan, Y., & Huang, J. (2021). Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nature Energy, 7(1), 65–73. https://doi.org/10.1038/s41560-021-00949-9

    Article  CAS  Google Scholar 

  54. Meggiolaro, D., Motti, S. G., Mosconi, E., Barker, A. J., Ball, J., Perini, A. R., & C., Deschler, F., Petrozza, A., & De Angelis, F. (2018). Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy & Environmental Science, 11(3), 702–713. https://doi.org/10.1039/C8EE00124C

    Article  CAS  Google Scholar 

  55. Zhao, Y., Miao, P., Elia, J., Hu, H., Wang, X., Heumueller, T., Hou, Y., Matt, G. J., Osvet, A., Chen, Y.-T., Tarragó, M., de Ligny, D., Przybilla, T., Denninger, P., Will, J., Zhang, J., Tang, X., Li, N., He, C., & Brabec, C. J. (2020). Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nature Communications, 11(1), 6328. https://doi.org/10.1038/s41467-020-20066-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, Z., Li, Z., Meng, L., Lien, S., & Gao, P. (2020). Perovskite-Based Tandem Solar Cells: Get the Most Out of the Sun. Advanced Functional Materials, 30(38), 2001904. https://doi.org/10.1002/adfm.202001904

    Article  CAS  Google Scholar 

  57. Turren-Cruz, S.-H., Hagfeldt, A., & Saliba, M. (2018). Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 362(6413), 449–453. https://doi.org/10.1126/science.aat3583

    Article  CAS  PubMed  Google Scholar 

  58. Rehman, W., McMeekin, D. P., Patel, J. B., Milot, R. L., Johnston, M. B., Snaith, H. J., & Herz, L. M. (2017). Photovoltaic mixed-cation lead mixed-halide perovskites: Links between crystallinity, photo-stability and electronic properties. Energy & Environmental Science, 10(1), 361–369. https://doi.org/10.1039/C6EE03014A

    Article  CAS  Google Scholar 

  59. Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M. K., Zakeeruddin, S. M., Tress, W., Abate, A., Hagfeldt, A., & Grätzel, M. (2016). Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9(6), 1989–1997. https://doi.org/10.1039/C5EE03874J

    Article  CAS  Google Scholar 

  60. Duong, T., Mulmudi, H. K., Wu, Y., Fu, X., Shen, H., Peng, J., Wu, N., Nguyen, H. T., Macdonald, D., Lockrey, M., White, T. P., Weber, K., & Catchpole, K. (2017). Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells. ACS Applied Materials & Interfaces, 9(32), 26859–26866. https://doi.org/10.1021/acsami.7b06816

    Article  CAS  Google Scholar 

  61. Bella, F., Renzi, P., Cavallo, C., & Gerbaldi, C. (2018). Caesium for Perovskite Solar Cells: An Overview. Chemistry - A European Journal, 24(47), 12183–12205. https://doi.org/10.1002/chem.201801096

    Article  CAS  PubMed  Google Scholar 

  62. Bush, K. A., Rolston, N., Gold-Parker, A., Manzoor, S., Hausele, J., Yu, Z. J., Raiford, J. A., Cheacharoen, R., Holman, Z. C., Toney, M. F., Dauskardt, R. H., & McGehee, M. D. (2018). Controlling Thin-Film Stress and Wrinkling during Perovskite Film Formation. ACS Energy Letters, 3(6), 1225–1232. https://doi.org/10.1021/acsenergylett.8b00544

    Article  CAS  Google Scholar 

  63. Li, Z., Yang, M., Park, J.-S., Wei, S.-H., Berry, J. J., & Zhu, K. (2016). Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chemistry of Materials, 28(1), 284–292. https://doi.org/10.1021/acs.chemmater.5b04107

    Article  CAS  Google Scholar 

  64. Duong, T., Mulmudi, H. K., Shen, H., Wu, Y., Barugkin, C., Mayon, Y. O., Nguyen, H. T., Macdonald, D., Peng, J., Lockrey, M., Li, W., Cheng, Y.-B., White, T. P., Weber, K., & Catchpole, K. (2016). Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy, 30, 330–340. https://doi.org/10.1016/j.nanoen.2016.10.027

    Article  CAS  Google Scholar 

  65. Zhang, M., Yun, J. S., Ma, Q., Zheng, J., Lau, C. F. J., Deng, X., Kim, J., Kim, D., Seidel, J., Green, M. A., Huang, S., & Ho-Baillie, A. W. Y. (2017). High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching. ACS Energy Letters, 2(2), 438–444. https://doi.org/10.1021/acsenergylett.6b00697

    Article  CAS  Google Scholar 

  66. Hu, Y., Aygüler, M. F., Petrus, M. L., Bein, T., & Docampo, P. (2017). Impact of Rubidium and Cesium Cations on the Moisture Stability of Multiple-Cation Mixed-Halide Perovskites. ACS Energy Letters, 2(10), 2212–2218. https://doi.org/10.1021/acsenergylett.7b00731

    Article  CAS  Google Scholar 

  67. Liang, P.-W., Chueh, C.-C., Xin, X.-K., Zuo, F., Williams, S. T., Liao, C.-Y., & Jen, A.K.-Y. (2015). High-Performance Planar-Heterojunction Solar Cells Based on Ternary Halide Large-Band-Gap Perovskites. Advanced Energy Materials, 5(1), 1400960. https://doi.org/10.1002/aenm.201400960

    Article  CAS  Google Scholar 

  68. Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., & Mosca, R. (2013). MAPbI 3–x Cl x Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chemistry of Materials, 25(22), 4613–4618. https://doi.org/10.1021/cm402919x

    Article  CAS  Google Scholar 

  69. Dastidar, S., Egger, D. A., Tan, L. Z., Cromer, S. B., Dillon, A. D., Liu, S., Kronik, L., Rappe, A. M., & Fafarman, A. T. (2016). High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide. Nano Letters, 16(6), 3563–3570. https://doi.org/10.1021/acs.nanolett.6b00635

    Article  CAS  PubMed  Google Scholar 

  70. Saidaminov, M. I., Kim, J., Jain, A., Quintero-Bermudez, R., Tan, H., Long, G., Tan, F., Johnston, A., Zhao, Y., Voznyy, O., & Sargent, E. H. (2018). Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nature Energy, 3(8), 648–654. https://doi.org/10.1038/s41560-018-0192-2

    Article  CAS  Google Scholar 

  71. Xu, J., Boyd, C. C., Yu, Z. J., Palmstrom, A. F., Witter, D. J., Larson, B. W., France, R. M., Werner, J., Harvey, S. P., Wolf, E. J., Weigand, W., Manzoor, S., van Hest, M. F. A. M., Berry, J. J., Luther, J. M., Holman, Z. C., & McGehee, M. D. (2020). Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science, 367(6482), 1097–1104. https://doi.org/10.1126/science.aaz5074

    Article  CAS  PubMed  Google Scholar 

  72. Wen, J., Zhao, Y., Liu, Z., Gao, H., Lin, R., Wan, S., Ji, C., Xiao, K., Gao, Y., Tian, Y., Xie, J., Brabec, C. J., & Tan, H. (2022). Steric Engineering Enables Efficient and Photostable Wide-Bandgap Perovskites for All-Perovskite Tandem Solar Cells. Advanced Materials, 34(26), 2110356. https://doi.org/10.1002/adma.202110356

    Article  CAS  Google Scholar 

  73. Zhu, Z., Mao, K., & Xu, J. (2021). Perovskite tandem solar cells with improved efficiency and stability. Journal of Energy Chemistry, 58, 219–232. https://doi.org/10.1016/j.jechem.2020.09.022

    Article  CAS  Google Scholar 

  74. Afshari, H., Sourabh, S., Chacon, S. A., Whiteside, V. R., Penner, R. C., Rout, B., Kirmani, A. R., Luther, J. M., Eperon, G. E., & Sellers, I. R. (2023). FACsPb Triple Halide Perovskite Solar Cells with Thermal Operation over 200 °C. ACS Energy Letters, 8(5), 2408–2413. https://doi.org/10.1021/acsenergylett.3c00551

    Article  CAS  Google Scholar 

  75. Mariotti, S., Köhnen, E., Scheler, F., Sveinbjörnsson, K., Zimmermann, L., Piot, M., Yang, F., Li, B., Warby, J., Musiienko, A., Menzel, D., Lang, F., Keßler, S., Levine, I., Mantione, D., Al-Ashouri, A., Härtel, M. S., Xu, K., Cruz, A., & Albrecht, S. (2023). Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science, 381(6653), 63–69. https://doi.org/10.1126/science.adf5872

    Article  CAS  PubMed  Google Scholar 

  76. Wang, R., Xue, J., Wang, K.-L., Wang, Z.-K., Luo, Y., Fenning, D., Xu, G., Nuryyeva, S., Huang, T., Zhao, Y., Yang, J. L., Zhu, J., Wang, M., Tan, S., Yavuz, I., Houk, K. N., & Yang, Y. (2019). Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 366(6472), 1509–1513. https://doi.org/10.1126/science.aay9698

    Article  CAS  PubMed  Google Scholar 

  77. Bai, S., Da, P., Li, C., Wang, Z., Yuan, Z., Fu, F., Kawecki, M., Liu, X., Sakai, N., Wang, J.T.-W., Huettner, S., Buecheler, S., Fahlman, M., Gao, F., & Snaith, H. J. (2019). Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 571(7764), 245–250. https://doi.org/10.1038/s41586-019-1357-2

    Article  CAS  PubMed  Google Scholar 

  78. Lin, Y.-H., Sakai, N., Da, P., Wu, J., Sansom, H. C., Ramadan, A. J., Mahesh, S., Liu, J., Oliver, R. D. J., Lim, J., Aspitarte, L., Sharma, K., Madhu, P. K., Morales-Vilches, A. B., Nayak, P. K., Bai, S., Gao, F., Grovenor, C. R. M., Johnston, M. B., & Snaith, H. J. (2020). A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science, 369(6499), 96–102. https://doi.org/10.1126/science.aba1628

    Article  CAS  PubMed  Google Scholar 

  79. Liu, J., Aydin, E., Yin, J., De Bastiani, M., Isikgor, F. H., Rehman, A. U., Yengel, E., Ugur, E., Harrison, G. T., Wang, M., Gao, Y., Khan, J. I., Babics, M., Allen, T. G., Subbiah, A. S., Zhu, K., Zheng, X., Yan, W., Xu, F., & De Wolf, S. (2021). 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule, 5(12), 3169–3186. https://doi.org/10.1016/j.joule.2021.11.003

    Article  CAS  Google Scholar 

  80. Al-Ashouri, A., Köhnen, E., Li, B., Magomedov, A., Hempel, H., Caprioglio, P., Márquez, J. A., Morales Vilches, A. B., Kasparavicius, E., Smith, J. A., Phung, N., Menzel, D., Grischek, M., Kegelmann, L., Skroblin, D., Gollwitzer, C., Malinauskas, T., Jošt, M., Matič, G., & Albrecht, S. (2020). Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 370(6522), 1300–1309. https://doi.org/10.1126/science.abd4016

    Article  CAS  PubMed  Google Scholar 

  81. Köhnen, E., Wagner, P., Lang, F., Cruz, A., Li, B., Roß, M., Jošt, M., Morales-Vilches, A. B., Topič, M., Stolterfoht, M., Neher, D., Korte, L., Rech, B., Schlatmann, R., Stannowski, B., & Albrecht, S. (2021). 27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom Cells. Solar RRL, 5(7), 2100244. https://doi.org/10.1002/solr.202100244

    Article  CAS  Google Scholar 

  82. Lin, Y., Bai, Y., Fang, Y., Chen, Z., Yang, S., Zheng, X., Tang, S., Liu, Y., Zhao, J., & Huang, J. (2018). Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. The Journal of Physical Chemistry Letters, 9(3), 654–658. https://doi.org/10.1021/acs.jpclett.7b02679

    Article  CAS  PubMed  Google Scholar 

  83. Yang, G., Ren, Z., Liu, K., Qin, M., Deng, W., Zhang, H., Wang, H., Liang, J., Ye, F., Liang, Q., Yin, H., Chen, Y., Zhuang, Y., Li, S., Gao, B., Wang, J., Shi, T., Wang, X., Lu, X., & Li, G. (2021). Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nature Photonics, 15(9), 681–689. https://doi.org/10.1038/s41566-021-00829-4

    Article  CAS  Google Scholar 

  84. Duong, T., Pham, H., Kho, T. C., Phang, P., Fong, K. C., Yan, D., Yin, Y., Peng, J., Mahmud, M. A., Gharibzadeh, S., Nejand, B. A., Hossain, I. M., Khan, M. R., Mozaffari, N., Wu, Y., Shen, H., Zheng, J., Mai, H., Liang, W., & Catchpole, K. (2020). High Efficiency Perovskite-Silicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite. Advanced Energy Materials, 10(9), 1903553. https://doi.org/10.1002/aenm.201903553

    Article  CAS  Google Scholar 

  85. Sutanto, A. A., Caprioglio, P., Drigo, N., Hofstetter, Y. J., Garcia-Benito, I., Queloz, V. I. E., Neher, D., Nazeeruddin, M. K., Stolterfoht, M., Vaynzof, Y., & Grancini, G. (2021). 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. Chem, 7(7), 1903–1916. https://doi.org/10.1016/j.chempr.2021.04.002

    Article  CAS  Google Scholar 

  86. Xu, Q., Shi, B., Li, Y., Yan, L., Duan, W., Li, Y., Li, R., Ren, N., Han, W., Liu, J., Huang, Q., Zhang, D., Ren, H., Xu, S., Zhang, C., Zhuang, H., Lambertz, A., Ding, K., Zhao, Y., & Zhang, X. (2022). Conductive Passivator for Efficient Monolithic Perovskite/Silicon Tandem Solar Cell on Commercially Textured Silicon. Advanced Energy Materials, 12(46), 2202404. https://doi.org/10.1002/aenm.202202404

    Article  CAS  Google Scholar 

  87. Kim, D., Jung, H. J., Park, I. J., Larson, B. W., Dunfield, S. P., Xiao, C., Kim, J., Tong, J., Boonmongkolras, P., Ji, S. G., Zhang, F., Pae, S. R., Kim, M., Kang, S. B., Dravid, V., Berry, J. J., Kim, J. Y., Zhu, K., Kim, D. H., & Shin, B. (2020). Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science, 368(6487), 155–160. https://doi.org/10.1126/science.aba3433

    Article  CAS  PubMed  Google Scholar 

  88. Yan, L., Qiu, S., Yu, B., Huang, J., Qiu, J., Zhang, C., Guo, F., Yang, Y., & Mai, Y. (2022). Synergistic Passivation of Perovskite Absorber Films for Efficient Four-Terminal Perovskite/Silicon Tandem Solar Cells. Advanced Energy and Sustainability Research, 3(6), 2100199. https://doi.org/10.1002/aesr.202100199

    Article  CAS  Google Scholar 

  89. Duong, T., Nguyen, T., Huang, K., Pham, H., Adhikari, S. G., Khan, M. R., Duan, L., Liang, W., Fong, K. C., Shen, H., Bui, A. D., Mayon, A. O., Truong, T., Tabi, G., Ahmad, V., Surve, S., Tong, J., Kho, T., Tran-Phu, T., & Catchpole, K. (2023). Bulk Incorporation with 4-Methylphenethylammonium Chloride for Efficient and Stable Methylammonium-Free Perovskite and Perovskite-Silicon Tandem Solar Cells. Advanced Energy Materials, 13(9), 2203607. https://doi.org/10.1002/aenm.202203607

    Article  CAS  Google Scholar 

  90. Lee, D. S., Yun, J. S., Kim, J., Soufiani, A. M., Chen, S., Cho, Y., Deng, X., Seidel, J., Lim, S., Huang, S., & Ho-Baillie, A. W. Y. (2018). Passivation of Grain Boundaries by Phenethylammonium in Formamidinium-Methylammonium Lead Halide Perovskite Solar Cells. ACS Energy Letters, 3(3), 647–654. https://doi.org/10.1021/acsenergylett.8b00121

    Article  CAS  Google Scholar 

  91. National Renewable Energy Laboratory. (2023). Best Research-Cell Efficiency Chart. National Renewable Energy Laboratory. https://www.nrel.gov/pv/cell-efficiency.html/

  92. Aydin, E., Ugur, E., Yildirim, B. K., Allen, T. G., Dally, P., Razzaq, A., Cao, F., Xu, L., Vishal, B., Yazmaciyan, A., Said, A. A., Zhumagali, S., Azmi, R., Babics, M., Fell, A., Xiao, C., & De Wolf, S. (2023). Enhanced optoelectronic coupling for perovskite-silicon tandem solar cells. Nature. https://doi.org/10.1038/s41586-023-06667-4

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chin, X. Y., Turkay, D., Steele, J. A., Tabean, S., Eswara, S., Mensi, M., Fiala, P., Wolff, C. M., Paracchino, A., Artuk, K., Jacobs, D., Guesnay, Q., Sahli, F., Andreatta, G., Boccard, M., Jeangros, Q., & Ballif, C. (2023). Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science, 381(6653), 59–63. https://doi.org/10.1126/science.adg0091

    Article  CAS  PubMed  Google Scholar 

  94. Tockhorn, P., Sutter, J., Cruz, A., Wagner, P., Jäger, K., Yoo, D., Lang, F., Grischek, M., Li, B., Li, J., Shargaieva, O., Unger, E., Al-Ashouri, A., Köhnen, E., Stolterfoht, M., Neher, D., Schlatmann, R., Rech, B., Stannowski, B., & Becker, C. (2022). Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells. Nature Nanotechnology, 17(11), 1214–1221. https://doi.org/10.1038/s41565-022-01228-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sveinbjörnsson, K., Li, B., Mariotti, S., Jarzembowski, E., Kegelmann, L., Wirtz, A., Frühauf, F., Weihrauch, A., Niemann, R., Korte, L., Fertig, F., Müller, J. W., & Albrecht, S. (2022). Monolithic Perovskite/Silicon Tandem Solar Cell with 28.7% Efficiency Using Industrial Silicon Bottom Cells. ACS Energy Letters, 7(8), 2654–2656. https://doi.org/10.1021/acsenergylett.2c01358

    Article  CAS  Google Scholar 

  96. Luo, X., Luo, H., Li, H., Xia, R., Zheng, X., Huang, Z., Liu, Z., Gao, H., Zhang, X., Li, S., Feng, Z., Chen, Y., & Tan, H. (2023). Efficient Perovskite/Silicon Tandem Solar Cells on Industrially Compatible Textured Silicon. Advanced Materials, 35(9), 2207883. https://doi.org/10.1002/adma.202207883

    Article  CAS  Google Scholar 

  97. Zheng, J., Duan, W., Guo, Y., Zhao, Z. C., Yi, H., Ma, F.-J., Granados Caro, L., Yi, C., Bing, J., Tang, S., Qu, J., Fong, K. C., Cui, X., Zhu, Y., Yang, L., Lambertz, A., Arafat Mahmud, M., Chen, H., Liao, C., & Ho-Baillie, A. W. Y. (2023). Efficient monolithic perovskite–Si tandem solar cells enabled by an ultra-thin indium tin oxide interlayer. Energy & Environmental Science. https://doi.org/10.1039/D2EE04007G

    Article  Google Scholar 

  98. Hou, Y., Aydin, E., De Bastiani, M., Xiao, C., Isikgor, F. H., Xue, D.-J., Chen, B., Chen, H., Bahrami, B., Chowdhury, A. H., Johnston, A., Baek, S.-W., Huang, Z., Wei, M., Dong, Y., Troughton, J., Jalmood, R., Mirabelli, A. J., Allen, T. G., & Sargent, E. H. (2020). Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 367(6482), 1135–1140. https://doi.org/10.1126/science.aaz3691

    Article  CAS  PubMed  Google Scholar 

  99. Nogay, G., Sahli, F., Werner, J., Monnard, R., Boccard, M., Despeisse, M., Haug, F.-J., Jeangros, Q., Ingenito, A., & Ballif, C. (2019). 25.1%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cell Based on a p-type Monocrystalline Textured Silicon Wafer and High-Temperature Passivating Contacts. ACS Energy Letters, 4(4), 844–845. https://doi.org/10.1021/acsenergylett.9b00377

    Article  CAS  Google Scholar 

  100. Ji, S. G., Park, I. J., Chang, H., Park, J. H., Hong, G. P., Choi, B. K., Jang, J. H., Choi, Y. J., Lim, H. W., Ahn, Y. J., Park, S. J., Nam, K. T., Hyeon, T., Park, J., Kim, D. H., & Kim, J. Y. (2022). Stable pure-iodide wide-band-gap perovskites for efficient Si tandem cells via kinetically controlled phase evolution. Joule, 6(10), 2390–2405. https://doi.org/10.1016/j.joule.2022.08.006

    Article  CAS  Google Scholar 

  101. Li, T., Xu, J., Lin, R., Teale, S., Li, H., Liu, Z., Duan, C., Zhao, Q., Xiao, K., Wu, P., Chen, B., Jiang, S., Xiong, S., Luo, H., Wan, S., Li, L., Bao, Q., Tian, Y., Gao, X., & Tan, H. (2023). Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nature Energy, 8(6), 610–620. https://doi.org/10.1038/s41560-023-01250-7

    Article  CAS  Google Scholar 

  102. De Wolf, S., Descoeudres, A., Holman, Z. C., & Ballif, C. (2012). High-efficiency Silicon Heterojunction Solar Cells: A Review. Green, 2(1), 7–24. https://doi.org/10.1515/green-2011-0018

    Article  CAS  Google Scholar 

  103. Green, M. A. (2015). The Passivated Emitter and Rear Cell (PERC): From conception to mass production. Solar Energy Materials and Solar Cells, 143, 190–197. https://doi.org/10.1016/j.solmat.2015.06.055

    Article  CAS  Google Scholar 

  104. Dullweber, T., & Schmidt, J. (2016). Industrial Silicon Solar Cells Applying the Passivated Emitter and Rear Cell (PERC) Concept—A Review. IEEE Journal of Photovoltaics, 6(5), 1366–1381. https://doi.org/10.1109/JPHOTOV.2016.2571627

    Article  Google Scholar 

  105. Blakers, A. (2019). Development of the PERC Solar Cell. IEEE Journal of Photovoltaics, 9(3), 629–635. https://doi.org/10.1109/JPHOTOV.2019.2899460

    Article  Google Scholar 

  106. Baliozian, P., Tepner, S., Fischer, M., Trube, J., Herritsch, S., Gensowski, K., Clement, F., Nold, S., & Preu, R. (2020). The International Technology Roadmap for Photovoltaics and the Significance of Its Decade-Long Projections [Application/pdf]. 37th European Photovoltaic Solar Energy Conference and Exhibition; 420–426, 7 pages, 11197 kb. https://doi.org/10.4229/EUPVSEC20202020-2CV.1.59

  107. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316–319. https://doi.org/10.1038/nature12340

    Article  CAS  PubMed  Google Scholar 

  108. Wu, Y., Yan, D., Peng, J., Duong, T., Wan, Y., Phang, S. P., Shen, H., Wu, N., Barugkin, C., Fu, X., Surve, S., Grant, D., Walter, D., White, T. P., Catchpole, K. R., & Weber, K. J. (2017). Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy & Environmental Science, 10(11), 2472–2479. https://doi.org/10.1039/C7EE02288C

    Article  CAS  Google Scholar 

  109. Hoye, R. L. Z., Bush, K. A., Oviedo, F., Sofia, S. E., Thway, M., Li, X., Liu, Z., Jean, J., Mailoa, J. P., Osherov, A., Lin, F., Palmstrom, A. F., Bulovic, V., McGehee, M. D., Peters, I. M., & Buonassisi, T. (2018). Developing a Robust Recombination Contact to Realize Monolithic Perovskite Tandems With Industrially Common p-Type Silicon Solar Cells. IEEE Journal of Photovoltaics, 8(4), 1023–1028. https://doi.org/10.1109/JPHOTOV.2018.2820509

    Article  Google Scholar 

  110. Werner, J., Walter, A., Rucavado, E., Moon, S.-J., Sacchetto, D., Rienaecker, M., Peibst, R., Brendel, R., Niquille, X., De Wolf, S., Löper, P., Morales-Masis, M., Nicolay, S., Niesen, B., & Ballif, C. (2016). Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells. Applied Physics Letters, 109(23), 233902. https://doi.org/10.1063/1.4971361

    Article  CAS  Google Scholar 

  111. Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K., & Maruyama, E. (2014). 247% Record Efficiency HIT Solar Cell on Thin Silicon Wafer. IEEE Journal of Photovoltaics, 4(1), 96–99. https://doi.org/10.1109/JPHOTOV.2013.2282737

    Article  Google Scholar 

  112. Holman, Z. C., Descoeudres, A., De Wolf, S., & Ballif, C. (2013). Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Cells With Dielectric/Metal Rear Reflectors. IEEE Journal of Photovoltaics, 3(4), 1243–1249. https://doi.org/10.1109/JPHOTOV.2013.2276484

    Article  Google Scholar 

  113. Haschke, J., Dupré, O., Boccard, M., & Ballif, C. (2018). Silicon heterojunction solar cells: Recent technological development and practical aspects - from lab to industry. Solar Energy Materials and Solar Cells, 187, 140–153. https://doi.org/10.1016/j.solmat.2018.07.018

    Article  CAS  Google Scholar 

  114. Haschke, J., Seif, J. P., Riesen, Y., Tomasi, A., Cattin, J., Tous, L., Choulat, P., Aleman, M., Cornagliotti, E., Uruena, A., Russell, R., Duerinckx, F., Champliaud, J., Levrat, J., Abdallah, A. A., Aïssa, B., Tabet, N., Wyrsch, N., Despeisse, M., & Ballif, C. (2017). The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates. Energy & Environmental Science, 10(5), 1196–1206. https://doi.org/10.1039/C7EE00286F

    Article  CAS  Google Scholar 

  115. Walter, A., Kamino, B., Moon, S.-J., Wyss, P., Díaz Léon, J. J., Allebé, C., Descoeudres, A., Nicolay, S., Ballif, C., Jeangros, Q., & Ingenito, A. (2023). Rear Textured p-type High Temperature Passivating Contacts and their Implementation in Perovskite/Silicon Tandem Cells. Energy Advances. https://doi.org/10.1039/D3YA00048F

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wafer World. (2017, March 8). Float Zone Silicon vs Czochralski Silicon | Which Is Better? Wafer World. https://www.waferworld.com/post/float-zone-silicon-vs-czochralski

  117. Sahli, F., Werner, J., Kamino, B. A., Bräuninger, M., Monnard, R., Paviet-Salomon, B., Barraud, L., Ding, L., Diaz Leon, J. J., Sacchetto, D., Cattaneo, G., Despeisse, M., Boccard, M., Nicolay, S., Jeangros, Q., Niesen, B., & Ballif, C. (2018). Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 17(9), 820–826. https://doi.org/10.1038/s41563-018-0115-4

    Article  CAS  PubMed  Google Scholar 

  118. Chen, B., Yu, Z. J., Manzoor, S., Wang, S., Weigand, W., Yu, Z., Yang, G., Ni, Z., Dai, X., Holman, Z. C., & Huang, J. (2020). Blade-Coated Perovskites on Textured Silicon for 26%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells. Joule, 4(4), 850–864. https://doi.org/10.1016/j.joule.2020.01.008

    Article  CAS  Google Scholar 

  119. De Bastiani, M., Jalmood, R., Liu, J., Ossig, C., Vlk, A., Vegso, K., Babics, M., Isikgor, F. H., Selvin, A. S., Azmi, R., Ugur, E., Banerjee, S., Mirabelli, A. J., Aydin, E., Allen, T. G., Ur Rehman, A., Van Kerschaver, E., Siffalovic, P., Stuckelberger, M. E., & De Wolf, S. (2023). Monolithic Perovskite/Silicon Tandems with >28% Efficiency: Role of Silicon-Surface Texture on Perovskite Properties. Advanced Functional Materials, 33(4), 2205557. https://doi.org/10.1002/adfm.202205557

    Article  CAS  Google Scholar 

  120. Roß, M., Severin, S., Stutz, M. B., Wagner, P., Köbler, H., Favin-Lévêque, M., Al-Ashouri, A., Korb, P., Tockhorn, P., Abate, A., Stannowski, B., Rech, B., & Albrecht, S. (2021). Co-Evaporated Formamidinium Lead Iodide Based Perovskites with 1000 h Constant Stability for Fully Textured Monolithic Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials, 11(35), 2101460. https://doi.org/10.1002/aenm.202101460

    Article  CAS  Google Scholar 

  121. Gil-Escrig, L., Susic, I., Doğan, İ, Zardetto, V., Najafi, M., Zhang, D., Veenstra, S., Sedani, S., Arikan, B., Yerci, S., Bolink, H. J., & Sessolo, M. (2023). Efficient and Thermally Stable Wide Bandgap Perovskite Solar Cells by Dual-Source Vacuum Deposition. Advanced Functional Materials, 33(31), 2214357. https://doi.org/10.1002/adfm.202214357

    Article  CAS  Google Scholar 

  122. Harter, A., Mariotti, S., Korte, L., Schlatmann, R., Albrecht, S., & Stannowski, B. (2023). Double-sided nano-textured surfaces for industry compatible high-performance silicon heterojunction and perovskite/silicon tandem solar cells. Progress in Photovoltaics: Research and Applications, 31(8), 813–823. https://doi.org/10.1002/pip.3685

    Article  CAS  Google Scholar 

  123. Sahli, F., Kamino, B. A., Werner, J., Bräuninger, M., Paviet-Salomon, B., Barraud, L., Monnard, R., Seif, J. P., Tomasi, A., Jeangros, Q., Hessler-Wyser, A., De Wolf, S., Despeisse, M., Nicolay, S., Niesen, B., & Ballif, C. (2018). Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction. Advanced Energy Materials, 8(6), 1701609. https://doi.org/10.1002/aenm.201701609

    Article  CAS  Google Scholar 

  124. Mazzarella, L., Lin, Y., Kirner, S., Morales-Vilches, A. B., Korte, L., Albrecht, S., Crossland, E., Stannowski, B., Case, C., Snaith, H. J., & Schlatmann, R. (2019). Infrared Light Management Using a Nanocrystalline Silicon Oxide Interlayer in Monolithic Perovskite/Silicon Heterojunction Tandem Solar Cells with Efficiency above 25%. Advanced Energy Materials, 9(14), 1803241. https://doi.org/10.1002/aenm.201803241

    Article  CAS  Google Scholar 

  125. Zheng, J., Lau, C. F. J., Mehrvarz, H., Ma, F.-J., Jiang, Y., Deng, X., Soeriyadi, A., Kim, J., Zhang, M., Hu, L., Cui, X., Lee, D. S., Bing, J., Cho, Y., Chen, C., Green, M. A., Huang, S., & Ho-Baillie, A. W. Y. (2018). Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency. Energy & Environmental Science, 11(9), 2432–2443. https://doi.org/10.1039/C8EE00689J

    Article  CAS  Google Scholar 

  126. Zheng, X., Li, Z., Zhang, Y., Chen, M., Liu, T., Xiao, C., Gao, D., Patel, J. B., Kuciauskas, D., Magomedov, A., Scheidt, R. A., Wang, X., Harvey, S. P., Dai, Z., Zhang, C., Morales, D., Pruett, H., Wieliczka, B. M., Kirmani, A. R., & Luther, J. M. (2023). Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nature Energy, 8(5), 462–472. https://doi.org/10.1038/s41560-023-01227-6

    Article  CAS  Google Scholar 

  127. Puaud, A. (2021). Understanding and Optimisation of transport mechanisms in Perovskite on Silicon Heterojunction Tandem Solar Cells [Université Grenoble Alpes]. https://theses.hal.science/tel-03462780

  128. Jäger, K., Sutter, J., Hammerschmidt, M., Schneider, P.-I., & Becker, C. (2021). Prospects of light management in perovskite/silicon tandem solar cells. Nanophotonics, 10(8), 1991–2000. https://doi.org/10.1515/nanoph-2020-0674

    Article  CAS  Google Scholar 

  129. Park, J., Kim, J., Yun, H.-S., Paik, M. J., Noh, E., Mun, H. J., Kim, M. G., Shin, T. J., & Seok, S. I. (2023). Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature. https://doi.org/10.1038/s41586-023-05825-y

    Article  PubMed  PubMed Central  Google Scholar 

  130. Ye, S., Rao, H., Feng, M., Xi, L., Yen, Z., Seng, D. H. L., Xu, Q., Boothroyd, C., Chen, B., Guo, Y., Wang, B., Salim, T., Zhang, Q., He, H., Wang, Y., Xiao, X., Lam, Y. M., & Sum, T. C. (2023). Expanding the low-dimensional interface engineering toolbox for efficient perovskite solar cells. Nature Energy. https://doi.org/10.1038/s41560-023-01204-z

    Article  Google Scholar 

  131. Muscarella, L. A., Petrova, D., Cervasio, R. J., Farawar, A., Lugier, O., McLure, C., Slaman, M. J., Wang, J., Hauff, E. von, & Williams, R. M. (2017). Enhanced Grain-boundary Emission Lifetime and Additive Induced Crystal Orientation in One-Step Spin-Coated Mixed Cationic (FA/MA) Lead Perovskite Thin Films Stabilized by Zinc Iodide Doping. https://doi.org/10.26434/chemrxiv.5484073.v2

  132. Muscarella, L. A., Petrova, D., Jorge Cervasio, R., Farawar, A., Lugier, O., McLure, C., Slaman, M. J., Wang, J., Ehrler, B., von Hauff, E., & Williams, R. M. (2019). Air-Stable and Oriented Mixed Lead Halide Perovskite (FA/MA) by the One-Step Deposition Method Using Zinc Iodide and an Alkylammonium Additive. ACS Applied Materials & Interfaces, 11(19), 17555–17562. https://doi.org/10.1021/acsami.9b03810

    Article  CAS  Google Scholar 

  133. Kooijman, A., Muscarella, L. A., & Williams, R. M. (2019). Perovskite Thin Film Materials Stabilized and Enhanced by Zinc(II) Doping. Applied Sciences, 9(8), 1678. https://doi.org/10.3390/app9081678

    Article  CAS  Google Scholar 

  134. Yang, W. S., Park, B.-W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U., Shin, S. S., Seo, J., Kim, E. K., Noh, J. H., & Seok, S. I. (2017). Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 356(6345), 1376–1379. https://doi.org/10.1126/science.aan2301

    Article  CAS  PubMed  Google Scholar 

  135. Jeong, J., Kim, M., Seo, J., Lu, H., Ahlawat, P., Mishra, A., Yang, Y., Hope, M. A., Eickemeyer, F. T., Kim, M., Yoon, Y. J., Choi, I. W., Darwich, B. P., Choi, S. J., Jo, Y., Lee, J. H., Walker, B., Zakeeruddin, S. M., Emsley, L., & Kim, J. Y. (2021). Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 592(7854), 381–385. https://doi.org/10.1038/s41586-021-03406-5

    Article  CAS  PubMed  Google Scholar 

  136. Chi, W., Banerjee, S. K., Jayawardena, K. G. D. I., Silva, S. R. P., & Seok, S. I. (2023). Perovskite/Silicon Tandem Solar Cells: Choice of Bottom Devices and Recombination Layers. ACS Energy Letters, 8(3), 1535–1550. https://doi.org/10.1021/acsenergylett.2c02725

    Article  CAS  Google Scholar 

  137. Hoeksma, M.M., & Williams, R.M. (2023). Synergistic zinc(II) and formate doping of alpha-FAPbI3 perovskite: Thermal stabilization and enhanced photoluminescence lifetime. Preprints. https://doi.org/10.20944/preprints202311.0730.v1

Download references

Acknowledgements

We thank Jordan P. Mulvaney for language corrections, Srest Somay for his help with the graphical abstract and the University of Amsterdam for structural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René M. Williams.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Perspective

Topical Collection in honor of Prof. Dr. A. M. (Fred) Brouwer and his contributions to science.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchant, C., Williams, R.M. Perovskite/silicon tandem solar cells–compositions for improved stability and power conversion efficiency. Photochem Photobiol Sci 23, 1–22 (2024). https://doi.org/10.1007/s43630-023-00500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00500-7

Keywords

Navigation