Skip to main content
Log in

Magnetically controllable transmission spectrum of a 1D photonic crystal with a graphene defect layer in infrared region

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Magneto-optical properties of a one-dimensional (1D) photonic crystal with a graphene defect layer is investigated. It is shown that the steady-state behavior of the medium completely depends on the intensities of magnetic and coherent coupling fields. By proper chose of the controllable parameters, it is found that the absorption spectrum of 1D photonic crystal can be adjusted easily. In addition, by controlling the magnetic field and Rabi-frequencies of applied lights, the transmitted and reflected light pulses at the infrared region can be tuned. The effect of magnetic and coupling fields on the transmission and reflection properties of the laser pulse at \(\lambda_{0} = 9\;\upmu\hbox{m}\) of the medium is also studied. It is found that optical bistability in reflection and output fields can be controlled by applying the magnetic and coupling fields. The proposed model may provide some new possibilities for technological applications in optoelectronics, solid-state quantum information science and systems, due to vast applications in signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Asadpour, S.H., Soleimani, H.R.: Phase and thickness control of optical bistability and multistability in a defect slab with a single layer of graphene. Laser Phys. Lett. 13(1), 015201 (2015)

    Article  ADS  Google Scholar 

  • Asadpour, S.H., et al.: All-optical switching between optical bistability and multistability in a defect dielectric medium doped with a multiple quantum well nanostructure. Appl. Opt. 55(4), 722–727 (2016)

    Article  ADS  Google Scholar 

  • Asadpour, S.H., Hamid, R.H., Mahmoud, J.: Enhancement of Goos-Hänchen shift due to a Rydberg state. Appl. Opt. 57(15), 4013–4019 (2018)

    Article  ADS  Google Scholar 

  • Bagci, F., Akaoglu, B.: A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product. J. Appl. Phys. 123, 173101 (2018)

    Article  ADS  Google Scholar 

  • Becerra-Castro, E.M., de Araujo, L.E.E.: Electromagnetically induced cross focusing in a four-level atomic medium. J. Opt. Soc. Am. B 33, 1574–1579 (2016)

    Article  ADS  Google Scholar 

  • Bhuyan, S.A., Uddin, N., Islam, M., Bipasha, F.A., Hossain, S.S.: Synthesis of graphene. Int. Nano. Lett. 6, 65–83 (2016)

    Article  Google Scholar 

  • Centini, M., Bloemer, M., Myneni, K., Scalora, M., Sibilia, C., Bertolotti, M., D’Aguanno, G.: Signal velocity and group velocity for an optical pulse propagating through a GaAs cavity. Phys. Rev. E 68, 016602 (2003)

    Article  ADS  Google Scholar 

  • Chow, W.W., Schneider, H.C., Phillips, M.C.: Theory of quantum-coherence phenomena in semiconductor quantum dots. Phys. Rev. A 68, 053802 (2003)

    Article  ADS  Google Scholar 

  • De Medeiros, F., Albuquerque, E., Vasconcelos, M.: Optical transmission spectra in quasiperiodic multilayered photonic structure. J. Phys. 18, 8737–8747 (2006)

    Google Scholar 

  • Ding, C., et al.: Formation and ultraslow propagation of infrared solitons in graphene under an external magnetic field. J. Appl. Phys. 115(23), 234301 (2014a)

    Article  ADS  Google Scholar 

  • Ding, C., et al.: Matched infrared soliton pairs in graphene under Landau quantization via four-wave mixing. Phys. Rev. A 90(4), 043819 (2014b)

    Article  ADS  Google Scholar 

  • Dutta, S., Dastidar, K.R.: Study of group velocity in the negative refractive index region in three level closed Λ system via spontaneously generated coherence. Mol. Phys. 110, 431–443 (2012)

    Article  ADS  Google Scholar 

  • Dutton, Z., Behroozi, C.H., Hau, L.V., Harris, S.E.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    Article  ADS  Google Scholar 

  • Galli, M., Bajoni, D., Marabelli, F., Andreani, L.C., Pavesi, L., Pucker, G.: Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry. Phys. Rev. B 69, 115107 (2004)

    Article  ADS  Google Scholar 

  • Hamedi, Hamid Reza: Optical bistability and multistability via magnetic field intensities in a solid. Appl. Opt. 53(24), 5391–5397 (2014)

    Article  ADS  Google Scholar 

  • Holloway, C.L., Simons, M.T., Gordon, J.A., Dienstfrey, A., Anderson, D.A., Raithel, G.: Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor. J. Appl. Phys. 121, 233106 (2017)

    Article  ADS  Google Scholar 

  • Huang, X., Yang, Y.: Dynamic and radiative properties of a Λ-type driven atom in anisotropic photonic crystals. J. Opt. Soc. Am. B 24, 699–706 (2007)

    Article  ADS  Google Scholar 

  • Huang, S., et al.: Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser. Opt. Express 22(10), 11417–11426 (2014)

    Article  ADS  Google Scholar 

  • Jafari, D., Sahrai, M., Motavalli, H.: Phase control of group velocity in one-dimensional photonic crystal with a dispersive defect layer. Opt. Int. J. Light Electron Opt. 124, 3305–3309 (2013)

    Article  Google Scholar 

  • Klimchitskaya, G.L., Mostepanenko, V.M.: Conductivity of pure graphene: theoretical approach using the polarization tensor. Phys. Rev. B 93, 245419 (2016)

    Article  ADS  Google Scholar 

  • Kuzmich, A., Dogariu, A., Wang, L.J., Milonni, P.W., Chiao, R.Y.: Signal velocity, causality, and quantum noise in superluminal light pulse propagation. Phys. Rev. Lett. 86, 3925–3929 (2001)

    Article  ADS  Google Scholar 

  • Li, J.: Efficient three-wave mixing via intersubband transitions in a semiconductor quantum well. Phys. Stat. Sol. (b) 244, 3333–3339 (2007)

    Article  ADS  Google Scholar 

  • Li, J., Zhao, D., Liu, Z.: Zero-photonic band gap in a quasiperiodic stacking of positive and negative refractive index materials. Phys. Lett. A 332, 461–468 (2004)

    Article  ADS  MATH  Google Scholar 

  • Liu, W., Zhang, H., Sun, H., Zhang, Q., Wang, D.: Optical bistability induced by spin–orbit coupling in the carbon-nanotube quantum dots. Appl. Opt. 55(5), 1090–1094 (2016)

    Article  ADS  Google Scholar 

  • Naseri, T., Asadpour, S.H., Sadighi-Bonabi, R.: Some optical properties of four-level media via coherent and incoherent pumping fields. J. Opt. Soc. Am. B 30, 641–648 (2013)

    Article  ADS  Google Scholar 

  • Serebryannikov, A.E., Lakhtakia, A.: Optical characteristics of a two-dimensional dielectric photonic crystal immersed in a coherent atomic gas. J. Opt. Soc. Am. B 29, 328–334 (2012)

    Article  ADS  Google Scholar 

  • Shiri, J.: Propagation of a laser pulse and electro-optic switch in a GaAs/AlGaAs quadruple-coupled quantum dot molecule nanostructure. Laser Phys. 26, 056202 (2016)

    Article  ADS  Google Scholar 

  • Shiri, J.: Slow and fast light propagation and controllable switch at λ = 1.55 µm in a photonic crystal with a defect layer doped by an InAs/GaAs quintuple-coupled quantum dot molecule nanostructure. Laser Phys. 29, 056202 (2019)

    Article  ADS  Google Scholar 

  • Shiri, J., Malakzadeh, A.: Controlling the optical properties of a laser pulse at λ = 1.55 μm in InGaAs\InP double coupled quantum well nanostructure. J. Eur. Opt. Soc. Publ. 13, 19 (2017a)

    Article  Google Scholar 

  • Shiri, J., Malakzadeh, A.: Phase controllable terahertz switch in a Landau-quantized graphene nanostructure. Laser Phys. 27, 016201 (2017b)

    Article  ADS  Google Scholar 

  • Shiri, J., Shahi, F., Mehmannavaz, M.R., Shahrassai, L.: Phase control of transient optical properties of double coupled quantum-dot nanostructure via Gaussian laser beams. Chin. Phys. Lett. 35, 024204 (2018)

    Article  ADS  Google Scholar 

  • Si, L.-G., Yang, W.-X., Lü, X.-Y., Hao, X., Yang, X.: Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λatomic system under Raman excitation. Phys. Rev. A 82, 013836 (2010)

    Article  ADS  Google Scholar 

  • Simons, M.T., Kautz, M.D., Holloway, C.L., Anderson, D.A., Raithel, G., Stack, D., St. John, M.C., Su, W.: Electromagnetically Induced Transparency (EIT) and Autler-Townes (AT) splitting in the presence of band-limited white Gaussian noise. J. Appl. Phys. 123, 203105 (2018)

    Article  ADS  Google Scholar 

  • Singh, M.R.: Two-photon absorption in photonic nanowires made from photonic crystals. J. Opt. Soc. Am. B 26, 1801–1807 (2009)

    Article  ADS  Google Scholar 

  • Solookinejad, G., Jabbari, M., Nafar, M., Ahmadi, E., Asadpour, S.H.: Controlling Goos-Hänchen shifts due to the surface plasmon effect in a hybrid system. Appl. Opt. 57(28), 8193–8198 (2018)

    Article  ADS  Google Scholar 

  • Soltani, A., Nasehi, R., Asadpour, S.H., Mahmoudi, M., Soleimani, H.R.: Investigation of optical bistability in a double In x Ga 1–x N/GaN quantum-dot nanostructure via inter-dot tunneling effect. Appl. Opt. 54(10), 2606–2614 (2015)

    Article  ADS  Google Scholar 

  • Song, Y.P., Hu, Y.W.: Quantum interference in InAs/InAlAs core-shell nanowires. Appl. Phys. Lett. 113, 143104 (2018)

    Article  ADS  Google Scholar 

  • Song, Y.F., et al.: Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. Opt. Express 21(8), 10010–10018 (2013)

    Article  ADS  Google Scholar 

  • Soukoulis, C.M. ed., Photonic Band Gaps and Localization. NATO ASI Series (Springer US, 1993), Vol. 308

  • Ssemnani, B., Majedi, A.H., Safavi-Naeini, S.: Nonlinear quantum optical properties of graphene. J. Opt. 18, 035402 (2016)

  • Steinberg, A.M., Kwiat, P.G., Chiao, R.Y.: Measurement of the single-photon tunneling time. Phys. Rev. Lett. 71, 708–711 (1993)

    Article  ADS  Google Scholar 

  • Tokman, M., Yao, X., Belyanin, A.: Generation of entangled photons in graphene in a strong magnetic field. Phys. Rev. Lett. 110(7), 077404 (2013)

    Article  ADS  Google Scholar 

  • Wang, Z.: Control of the probe absorption via incoherent pumping fields in asymmetric semiconductor quantum wells. Ann. Phys. 326, 340–349 (2011)

    Article  ADS  MATH  Google Scholar 

  • Wang, Z., Yu, B., Zhu, J., Cao, Z., Zhen, S., Wu, X., Xu, F.: Atom localization via controlled spontaneous emission in a five-level atomic system. Ann. Phys. (NY) 327, 1132–1145 (2012)

    Article  ADS  MATH  Google Scholar 

  • Wu, Y., Deng, L.: Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett. 93, 143904 (2004)

    Article  ADS  Google Scholar 

  • Wu, Y., Yang, X.: Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A 71, 053806 (2005)

    Article  ADS  Google Scholar 

  • Xiong, H., Si, L., Lv, X., Yang, X., Wu, Y.: Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions. Sci. China Phys. Mech. Astron. 58, 1–13 (2015)

    Article  Google Scholar 

  • Yablonovitch, E., Gmitter, T., Leung, K.: Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991)

    Article  ADS  Google Scholar 

  • Yang, W.-X., Chen, A.-X., Lee, R.-K., Wu, Y.: Matched slow optical soliton pairs via biexciton coherence in quantum dots. Phys. Rev. A. 84(1), 013835 (2011)

    Article  ADS  Google Scholar 

  • Ye, G., et al.: Realizing the electromagnetically induced transparency (EIT)-like transmission with a single hole-ring resonator. Opt. Commun. 445, 101–105 (2019)

    Article  ADS  Google Scholar 

  • Zhou, H., Gu, T.Y., McMillan, J.F., Petrone, N., Zande, A.V.F., Hone, J.C., Yu, M.B., et al.: Enhanced four wave mixing in graphene-silicon slow light photonic crystal waveguides. Appl. Phys. Lett. 105, 091111 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Khalilzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiri, J., Khalilzadeh, J. Magnetically controllable transmission spectrum of a 1D photonic crystal with a graphene defect layer in infrared region. Opt Quant Electron 52, 506 (2020). https://doi.org/10.1007/s11082-020-02620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02620-1

Keywords

Navigation