Skip to main content
Log in

Graphene-Based Metamaterial Absorber with Perfect Multi-band Absorption

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we propose an absorber with adjustable single-layer graphene multi-band perfect absorption, which has the advantages of simple structure, polarization insensitivity, tunability, multi-band absorption, and high sensitivity. The device can achieve four perfect absorption peaks at the same time, and the absorption rate of all absorption peaks is above 99%. The absorption effect of the absorber can be efficiently adjusted and controlled by adjusting the geometric parameters of the single-layer graphene array and the thickness of the dielectric layer. In addition, by changing the strength of the applied magnetic field, the Fermi level, and the relaxation rate of graphene, the absorption of the device can be dynamically adjusted, and high absorption can be maintained in the range of 0°–70° wide incidence angle. Finally, considering the potential sensing applications of the device, we measured maximum sensitivity (S) of 3.06 THz/RIU and a maximum figure of merit (FOM) of 54.6 when exposed to different ambient refractive indices, suggesting that the device can be used as a refractive index sensor. These results show that this study provides a new idea for the design of the tunable multi-band perfect metamaterial absorber based on graphene, which has great application value in many fields and provides a new reference for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Zheng, Y. Zheng, Y. Luo, Z. Yi, J. Zhang, L. Liu, Q. Song, P. Wu, Y. Yu, and J. Zhang, Terahertz perfect absorber based on flexible active switching of ultra-broadband and ultra-narrowband. Opt. Express 29, 42787 (2021).

    CAS  Google Scholar 

  2. R. Nie, C. He, R. Zhang, and Z. Song, Vanadium dioxide-based terahertz metasurfaces for manipulating wavefronts with switchable polarization. Opt. Laser Technol. 159, 109010 (2023).

    CAS  Google Scholar 

  3. W.L. Barnes, A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 6950 (2003).

    Google Scholar 

  4. D.R. Smith, W.J. Padilla, D. Vier, S.C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000).

    CAS  PubMed  Google Scholar 

  5. B. Spackova, P. Wrobel, M. Bockova, and J. Homola, Optical biosensors based on plasmonic nanostructures: a review. Proc. IEEE 104, 2380–2408 (2016).

    CAS  Google Scholar 

  6. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, and X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 7211 (2008).

    Google Scholar 

  7. L. Ye, X. Chen, G. Cai, J. Zhu, N. Liu, and Q.H. Liu, Electrically tunable broadband terahertz absorption with hybrid-patterned graphene metasurfaces. Nanomater-Basel 8, 562 (2018).

    Google Scholar 

  8. Z. Zhou, Y. Chen, Y. Tian, J. Liang, and W. Yang, Ultra-broadband metamaterial perfect solar absorber with polarization-independent and large incident angle-insensitive. Opt. Laser Technol. 156, 108591 (2022).

    CAS  Google Scholar 

  9. Y. Cheng, R. Gong, and J. Zhao, A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves. Opt. Mater. 62, 28 (2016).

    CAS  Google Scholar 

  10. S. Zhang, D.A. Genov, Y. Wang, M. Liu, and X. Zhang, Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).

    PubMed  Google Scholar 

  11. Z. Song, Q. Chu, and Q.H. Liu, Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface. Mater. Lett. 223, 90 (2018).

    CAS  Google Scholar 

  12. Z. Zheng, Y. Luo, H. Yang, Z. Yi, J. Zhang, Q. Song, W. Yang, C. Liu, X. Wu, and P. Wu, Thermal tuning of terahertz metamaterial absorber properties based on VO2. Phys. Chem. Chem. Phys. 24, 8846 (2022).

    CAS  PubMed  Google Scholar 

  13. A. Fardoost, F.G. Vanani, A.A. Amirhosseini, and R. Safian, Design of a multilayer graphene-based ultrawideband terahertz absorber. IEEE T. Nanotechnol. 16, 68 (2016).

    Google Scholar 

  14. Y. Cai, J. Zhu, and Q.H. Liu, Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers. Appl. Phys. Lett. 106, 043105 (2015).

    Google Scholar 

  15. Z. Li, S. Butun, and K. Aydin, Large-Area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2, 183 (2015).

    CAS  Google Scholar 

  16. F. He, B. Han, X. Li, T. Lang, X. Jing, and Z. Hong, Analogue of electromagnetically induced transparency with high-Q factor in metal-dielectric metamaterials based on bright-bright mode coupling. Opt. Express 27, 37590 (2019).

    CAS  PubMed  Google Scholar 

  17. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).

    CAS  PubMed  Google Scholar 

  18. H. Chen, Z. Chen, H. Yang, L. Wen, Z. Yi, Z. Zhou, B. Dai, J. Zhang, X. Wu, and P. Wu, Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Adv. 12, 7821 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. F. Qin, X. Chen, Z. Yi, W. Yao, H. Yang, Y. Tang, Y. Yi, H. Li, and Y. Yi, Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol. Energ. Mat. Sol. C. 211, 110535 (2020).

    CAS  Google Scholar 

  20. K.T. Lin, H. Lin, T. Yang, and B. Jia, Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. commun. 11, 1389 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    CAS  PubMed  Google Scholar 

  22. S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, and Y. Song, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574 (2010).

    CAS  PubMed  Google Scholar 

  23. K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, and T.F. Heinz, Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    PubMed  Google Scholar 

  24. M.D. Kapetanakis, W. Zhou, M.P. Oxley, J. Lee, M.P. Prange, S.J. Pennycook, J.C. Idrobo, and S.T. Pantelides, Low-loss electron energy loss spectroscopy: an atomic-resolution complement to optical spectroscopies and application to graphene. Phys. Rev. B 92, 125147 (2015).

    Google Scholar 

  25. M. Islam, J. Sultana, M. Biabanifard, Z. Vafapour, M. Nine, A. Dinovitser, C. Cordeiro, B.H. Ng, and D. Abbott, Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 158, 559 (2020).

    CAS  Google Scholar 

  26. S. Thongrattanasiri, F.H. Koppens, and F.J.G. De Abajo, Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012).

    PubMed  Google Scholar 

  27. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, Complete optical absorption in periodically patterned graphene. Opt. Express 24, 1518 (2016).

    CAS  PubMed  Google Scholar 

  28. X. Luo, Z.Q. Cheng, X. Zhai, Z.M. Liu, S.Q. Li, J.P. Liu, L.L. Wang, Q. Lin, and Y.H. Zhou, A tunable dual-band and polarization-insensitive coherent perfect absorber based on double-layers graphene hybrid waveguide. Nano Express 14, 1 (2019).

    Google Scholar 

  29. W. Yin, Z. Shen, S. Li, L. Zhang, and X. Chen, A three-dimensional dual-band terahertz perfect absorber as a highly sensitive sensor. Front. Phys-Lausanne 9, 665280 (2021).

    Google Scholar 

  30. Z. Liu, S. Zhuo, F. Zhou, X. Zhang, Y. Qin, X. Luo, C. Ji, and G. Yang, Double narrowband induced perfect absorption photonic sensor based on graphene–dielectric–gold hybrid metamaterial. Nanoscale Res. Lett. 17, 85 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Liu, X. Yin, and X. Zhang, Double-layer graphene optical modulator. Nano Lett. 12, 1482 (2012).

    PubMed  Google Scholar 

  32. C.H. Gan, H.S. Chu, and E.P. Li, Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys. Rev. B 85, 125431 (2012).

    Google Scholar 

  33. W. Zhu, I.D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, Multiband coherent perfect absorption in a water-based metasurface. Opt. Express 25, 15737 (2017).

    CAS  PubMed  Google Scholar 

  34. F. Liu, M. He, Z. Dong, Y. Wang, and B. Ni, Design of tunable dual-band terahertz perfect absorber base on graphene. Results Phys. 40, 105860 (2022).

    Google Scholar 

  35. P. Zamzam, P. Rezaei, and S.A. Khatami, Quad-band polarization-insensitive metamaterial perfect absorber based on bilayer graphene metasurface. Phys. E 128, 114621 (2021).

    CAS  Google Scholar 

  36. Y. Cai, Y. Guo, H. Zhang, Y. Wang, C. Chen, F. Lin, S. Zuo, and Y. Zhou, Tunable and polarization-sensitive graphene-based terahertz absorber with eight absorption bands. J. Phys. D Appl. Phys. 54, 195106 (2021).

    CAS  Google Scholar 

  37. M. Liu, H.Y. Hwang, H. Tao, A.C. Strikwerda, K. Fan, G.R. Keiser, A.J. Sternbach, K.G. West, S. Kittiwatanakul, and J. Lu, Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345 (2012).

    CAS  PubMed  Google Scholar 

  38. Z. Song, Y. Deng, Y. Zhou, and Z. Liu, Terahertz toroidal metamaterial with tunable properties. Opt. Express 27, 5792 (2019).

    CAS  PubMed  Google Scholar 

  39. Y. Liu, M. Bo, X. Yang, P. Zhang, C.Q. Sun, and Y.J. Huang, Size modulation electronic and optical properties of phosphorene nanoribbons: DFT–BOLS approximation. Phys. Chem. Chem. Phys. 19, 5304 (2017).

    CAS  PubMed  Google Scholar 

  40. W. Wei, J. Wu, S. Cui, Y. Zhao, W. Chen, and L. Mi, α-Ni (OH)2/NiS1.97 heterojunction composites with excellent ion and electron transport properties for advanced supercapacitors. Nanoscale 11, 6243 (2019).

    CAS  PubMed  Google Scholar 

  41. G. Li, T. Sang, H. Qi, X. Wang, X. Yin, Y. Wang, and L. Hu, Flexible control of absorption enhancement of circularly polarized light via square graphene disks. OSA Continuum. 3, 1999 (2020).

    CAS  Google Scholar 

  42. Y. Li, M. Li, P. Xu, S. Tang, and C. Liu, Efficient photocatalytic degradation of acid orange 7 over N-doped ordered mesoporous titania on carbon fibers under visible-light irradiation based on three synergistic effects. Appl. Catal. A-Gen. 524, 163 (2016).

    CAS  Google Scholar 

  43. X. Zeng, M. Gao, L. Zhang, G. Wan, and B. Hu, Design of a triple-band metamaterial absorber using equivalent circuit model and interference theory. Microw. Opt. Techn. Let. 60, 1676 (2018).

    Google Scholar 

  44. H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl. Phys. Lett. 103, 203112 (2013).

    Google Scholar 

  45. F.H. Koppens, D.E. Chang, and F.J. Garcia de Abajo, Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370 (2011).

    CAS  PubMed  Google Scholar 

  46. A. Bhattacharya, K.M. Devi, T. Nguyen, and G. Kumar, Actively tunable toroidal excitations in graphene based terahertz metamaterials. Opt. Commun. 459, 124919 (2020).

    CAS  Google Scholar 

  47. J. Li, X. Chen, Z. Yi, H. Yang, Y. Tang, Y. Yi, W. Yao, J. Wang, and Y. Yi, Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Mater. Today Energy 16, 100390 (2020).

    Google Scholar 

  48. Z.D. Yan, X. Lu, W. Du, Z. Lv, C. Tang, P. Cai, P. Gu, J. Chen, and Z. Yu, Ultraviolet graphene ultranarrow absorption engineered by lattice plasmon resonance. Nanotechnology 32, 465202 (2021).

    CAS  Google Scholar 

  49. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice and applications (Milton Park: Routledge, 2017).

    Google Scholar 

  50. H.T. Chen, Interference theory of metamaterial perfect absorbers. Opt. Express 20, 7165 (2012).

    PubMed  Google Scholar 

  51. B. Jan, T. Andreas, J. Arpad, H. Ulrich, and S. Carsten, The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5, 161 (2010).

    Google Scholar 

  52. W. Wang, K.J. Wang, Z.G. Yang, and J.S. Liu, Experimental demonstration of an ultra-flexible metamaterial absorber and its application in sensing. J. Phys. D Appl. Phys. 13, 135108 (2017).

    Google Scholar 

  53. J.P. Tian, R.J. Ke, R.C. Yang, and W.H. Pei, Tunable quad-band perfect metamaterial absorber on the basis of monolayer graphene pattern and its sensing application. Results Phys. 26, 104447 (2021).

    Google Scholar 

  54. B.X. Wang, G.Z. Wang, and T. Sang, Simple design of novel triple-band terahertz metamaterial absorber for sensing application. J. Phys. D Appl. Phys. 49, 165307 (2016).

    Google Scholar 

  55. R. Cheng, Y. Zhou, H. Liu, J. Liu, G. Sun, X. Zhou, H. Shen, Q. Wang, and Y. Zha, Tunable graphene-based terahertz absorber via an external magnetic field. Opt. Mater. Express 10, 501 (2020).

    CAS  Google Scholar 

  56. H.F. Liu, J.X. Wu, J.R. Yuan, and X.H. Deng, Dynamically tunable perfect THz absorption in graphene-based metamaterial structures. Europhys. Lett. 134, 57003 (2021).

    CAS  Google Scholar 

Download references

Funding

This study was funded by the Open Research Fund of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) (Grant Number: 2022-KF-15), the Open Research Fund of State Key Laboratory of Millimeter Waves (Grant Number: K201606), the National Natural Science Foundation of China (Grant Number: 11664025), and the Chongqing Natural Science Foundation (Grant Number: CSTB2023NSCQ-MSX0730).

Author information

Authors and Affiliations

Authors

Contributions

All authors have taken full responsibility for the content of this manuscript.

Corresponding author

Correspondence to Xin-Hua Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for Publication

The authors consent to publication of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Deng, XH., Zhang, P. et al. Graphene-Based Metamaterial Absorber with Perfect Multi-band Absorption. J. Electron. Mater. 53, 4049–4058 (2024). https://doi.org/10.1007/s11664-024-11108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11108-7

Keywords

Navigation