Skip to main content
Log in

Negative refraction in the double quantum dot system

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This work proposes a double quantum dot (DQD) system, with a wetting layer (WL) is included, to study the negative refractive index (NRI) under the application of the electric fields: pump, probe, and fields between WL-QD state, in addition to the magnetic field. The density matrix theory is used to write the equation of motion and an orthogonalized plane wave is used between WL-QD states. The results show that the DQD system exhibit NRI ordinarily until with pump and probe signals, only, due to the manipulation between states. A high NRI corresponding to neglected absorption is obtained under applied electric fields between QD-QD, the conduction (CB) and valence bands (VB) WL-QD fields. It is shown that the main requirement in increasing NRI is the high electric gain connected with a low magnetic one. This can be obtained under five applied electric fields in addition to a high VB WL-QD electric field. Neglecting WL reduces NRI by ~ 16 times. In single QD, the NRI is very small compared with DQD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdullah, M., Noori, F.T.M., Al-Khurasan, A.H.: Terahertz emission in ladder plus Y-configurations in double quantum dot structure. Appl Opt 16, 5186–5192 (2015)

    ADS  Google Scholar 

  • Al-Ameri, H.H., Abdullah, M., Al-Khursan, A.H.: Entanglement in ladder-plus-Y-double quantum dot structure via entropy. Appl Opt 58, 369–382 (2019)

    ADS  Google Scholar 

  • Al-Husseini, H., Al-Khursan, A.H., Al-Dabagh, S.Y.: III-N QD Lasers. Open Nanosci J 3, 1–11 (2009)

    Google Scholar 

  • Al-Khursan, A.H., Al-Khakani, M.K., Al-Mossawi, K.H.: Third-order non-linear susceptibility in a three-level QD system. Photonics Nanostructures Fundam Appl 7, 153–160 (2009)

    ADS  Google Scholar 

  • Al-Khursan, A.H., Ghalib, B.A., Al-Obaidi, S.J.: A numerical simulation of optical feedback on a quantum dot lasers. Semiconductors 46, 224–230 (2012)

    Google Scholar 

  • Al-Nashy, B., Abdullah, M., Al-Shatravi, A.G., Al-Khursan, A.H.: Lasing without population inversion in the four-level Y-type configuration in double quantum dot system. Pramana J Phys 91, 74 (2018)

    ADS  Google Scholar 

  • Al-Nashy, B., Amin, S.M.M., Al-Khursan, A.H.: Kerr effect in Y- configuration double quantum dot system. J. Opt. Soc. Am. B 31, 1991–1996 (2014)

    ADS  Google Scholar 

  • Al-Salihi, F.R., Al-Khursan, A.H.: Electromagnetically induced grating in double quantum dot system. Opt Quantum Electron 52, 185 (2020)

    Google Scholar 

  • Asada, M., Atsushi, K., Suematsu, Y.: Gain and intervalence band absorption in quantum-well lasers. IEEE J. Quantum Electron 7, 745–753 (1984)

    ADS  Google Scholar 

  • Asadpour, S.H., Sahrai, M., Sadighi-Bonabi, R., Soltani, A., Mahrami, H.: Enhancement of Kerr nonlinearity at long wavelength in a quantum dot nanostructure. Phys E 43, 1759–1762 (2011)

    Google Scholar 

  • Berman, P.R.: Goos-Hänchen shift in negatively refractive media". Phys. Rev. A 6, 067603 (2002)

    Google Scholar 

  • Ben-Ezra, Y., Lembrikov, B.I., Haridim, M.: Acceleration of gain recovery and dynamics of electrons in QD-SOA. IEEE J. Quantum Electron 41, 1268–1273 (2005)

    ADS  Google Scholar 

  • Borges, H.S., Sanz, L., Villas-Boas, J.M., Neto, O.D., Alcalde, A.M.: Tunneling induced transparency and slow light in quantum dot molecules. Phys. Rev. B 85, 115425 (2012)

    ADS  Google Scholar 

  • Chuang, S.L.: Physics of photonic devices, 2nd edn. Wiley, New Jersy (2009)

    Google Scholar 

  • Dolling, G., Wegener, M., Soukoulis, C.M., Linden, S.: Negative-index metamaterial at 780 nm wavelength. Opt. Lett. 1, 53–55 (2007)

    ADS  Google Scholar 

  • Drachev, V.P., Cai, W., Chettiar, U., Yuan, H.K., Sarychev, A.K., Kildishev, A.V., Shalaev, V.M.: Experimental verification of an optical negative-index material". Laser Phys. Lett. 1, 49–55 (2006)

    ADS  Google Scholar 

  • Fang, A.P., Ge, W., Wang, M., Li, F.L., Zubairy, M.S.: Negative refraction without absorption via quantum coherence. Phys. Rev. A 2, 023822 (2016)

    ADS  Google Scholar 

  • Foteinopoulou, S., Economou, E.N., Soukoulis, C.M.: Refraction in media with a negative refractive index. Phys. Rev. Lett. 90, 107402 (2003)

    ADS  Google Scholar 

  • Gorman, J., Hasko, D.G., Williams, D.A.: Charge-qubit operation of an isolated double quantum dot. Phys. Rev. Lett. 95, 090502 (2005)

    ADS  Google Scholar 

  • Hao, X., Wu, J., Wang, Y.: Steady-state absorption–dispersion properties and four wave mixing process in a quantum dot nanostructure. J. Opt. Soc. Am. B 29, 420–428 (2012)

    ADS  Google Scholar 

  • Kastel, J., Fleischhauer, M., Yelin, S.F., Walsworth, R.L.: Tunable negative refraction without absorption via electromagnetically induced chirality. Phys. Rev. Lett. 99, 073602 (2007)

    ADS  Google Scholar 

  • Kim, J., Chuang, S.L.: Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE J. Quantum Electron 9, 942–952 (2006)

    ADS  Google Scholar 

  • Kim, J., Laemmlin, M., Meuer, C., Bimberg, D., Eisenstein, G.: Static gain saturation model of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron 44, 658–666 (2008)

    ADS  Google Scholar 

  • Lukin, M.D., Yelin, S.F., Fleischhauer, M., Scully, M.O.: Quantum interference effects induced by interacting dark resonances. Phys Rev. A 4, 3225 (1999)

    ADS  Google Scholar 

  • Mahmoudi, M., Sahrai, M.: Absorption-free superluminal light propagation in a quantum-dot molecule. Phys E 41, 1772–1778 (2009)

    Google Scholar 

  • Miladic, S., Stipsic, P., Dobardzic, E., Milivojevi, M.: Electrical control of a spin qubit in InSb nanowire quantum dots: Strongly suppressed spin relaxation in high magnetic field. Phys. Rev. B 101, 155307 (2020)

    ADS  Google Scholar 

  • Niu, Y., Li, R., Gong, S.: High-efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system. Phys. Rev. A 71, 043819 (2005)

    ADS  Google Scholar 

  • Padilla, W.J., Smith, D.R., Basov, D.N.: Spectroscopy of metamaterials from infrared to optical frequencies. JOSA B 23, 404–414 (2006)

    ADS  Google Scholar 

  • Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 18, 3966 (2000)

    ADS  Google Scholar 

  • Rehman, E., Al-Khursan, A.H.: All-optical processes in double quantum dot structure. Appl Opt 55, 7337–7344 (2016)

    ADS  Google Scholar 

  • Sahrai, M., Mehmannavaz, M.R., Sattari, H.: Optically controllable switch for light propagation based on triple coupled quantum dots. Appl Opt 53, 2375–2383 (2014)

    ADS  Google Scholar 

  • Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 5514, 77–79 (2001)

    ADS  Google Scholar 

  • Smith, D.R., Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 18, 4184 (2000)

    ADS  Google Scholar 

  • Stavrou, V.N.: Spin qubits: spin relaxation in coupled quantum dots. J. Phys. Condens. Matter 30, 455301 (2018)

    Google Scholar 

  • Tarasov, G.G., Zhuchenko, Y.Z., Lisitsa, M.P., Mazur, Y.I., Wang, Z.M., Salamo, G.J., Warming, T., Bimberg, D., Kissel, H.: Optical detection of asymmetric quantum-dot molecules in double-layer InAs/GaAs structures. Semiconductors 40, 79–83 (2006)

    ADS  Google Scholar 

  • Verhagen, E., Waele, R., Kuipers, L., Polman, A.: Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides. Phys. Rev. Lett. 105, 223901 (2010)

    ADS  Google Scholar 

  • Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Phys-Uspekhi 10, 509–514 (1968)

    ADS  Google Scholar 

  • Veselago, V., Braginsky, L., Shklover, V., Hafner, C.: Negative refractive index materials. J. Comput Theor Nanosci 2, 189–218 (2006)

    Google Scholar 

  • Veselago, V.G., Narimanov, E.E.: The left hand of brightness: past, present and future of negative index materials. Nat. Mater. 10, 759–762 (2006)

    ADS  Google Scholar 

  • Villas-Bôas, J.M., Govorov, A.O., Ulloa, S.E.: Coherent control of tunneling in a quantum dot molecule. Phys. Rev. B 69, 125342 (2004)

    ADS  Google Scholar 

  • Wang, H., Zhu, K.: Voltage-controlled negative refractive index in vertically coupled quantum dot systems. Optics Communications 283, 4008–4011 (2010)

    ADS  Google Scholar 

  • Wang, L., Guo, G., Wei, D., Cao, G., Tu, T., Xiao, M., Guo, G.: Gates controlled parallel-coupled double quantum dot on both single layer and bilayer graphene. Appl. Phys. Lett. 99, 112117 (2011)

    ADS  Google Scholar 

  • Zhao, S.C., Qian, X.F., Zhang, Y.P., Zhang, Y.A.: Negative refraction with little loss manipulated by the voltage and pulsed laser in double quantum dots. Prog Theor. Phys. 2, 243–250 (2012)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Habbeb Al-Khursan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The dynamical equations of the DQD system shown in Fig. 1 are written as,

$$ \begin{aligned} \rho_{00}^{ \cdot } = & - \gamma_{0} \rho_{00} + i[A_{10} (\rho_{10} - \rho_{01} ) + \Omega_{20} (\rho_{20} - \rho_{02} ) \\ & + \Omega_{03} (\rho_{30} - \rho_{03} ) + \Omega_{04} (\rho_{40} - \rho_{04} )] \\ \end{aligned} $$
(36-1)
$$ \rho_{11}^{ \cdot } = - \gamma_{1} \rho_{11} + i[A_{10} (\rho_{01} - \rho_{10} ) + T_{21} (\rho_{21} - \rho_{11} ) + \Omega_{13} (\rho_{31} - \rho_{13} ) + \Omega_{14} (\rho_{41} - \rho_{14} )] $$
(36-2)
$$ \rho_{22}^{ \cdot } = - \gamma_{1} \rho_{22} + i[\Omega_{20} (\rho_{02} - \rho_{20} ) + T_{21} (\rho_{21} - \rho_{11} ) + \Omega_{25} (\rho_{52} - \rho_{25} )] $$
(36-3)
$$ \rho_{33}^{ \cdot } = - \gamma_{33} \rho_{33} + i[\Omega_{30} (\rho_{03} - \rho_{30} ) + \Omega_{31} (\rho_{13} - \rho_{31} ) + \Omega_{03} (\rho_{23} - \rho_{32} ) + \Omega_{35} (\rho_{53} - \rho_{35} )] $$
(36-4)
$$ \rho_{44}^{ \cdot } = - \gamma_{4} \rho_{44} + i[\Omega_{40} (\rho_{04} - \rho_{40} ) + \Omega_{41} (\rho_{14} - \rho_{41} )] $$
(36-5)
$$ \rho_{55}^{ \cdot } = - \gamma_{5} \rho_{55} + i[\Omega_{52} (\rho_{25} - \rho_{52} ) + \Omega_{53} (\rho_{35} - \rho_{53} )] $$
(36-6)
$$ \begin{aligned} \rho_{10}^{ \cdot } & = - [(\gamma_{1} + \gamma_{0} )\rho_{10} ] + i[A_{10} (\rho_{00} - \rho_{11} ) + T_{21} \rho_{20} + \Omega_{31} \rho_{30} + \Omega_{14} \rho_{40} - \,\,\Omega_{20} \rho_{12} \hfill \\ &\quad - \Omega_{30} \rho_{13} - \Omega_{40} \rho_{14} ] \hfill \\ \end{aligned} $$
(36-7)
$$ \rho_{20}^{ \cdot } = - i[(\gamma_{0} + \gamma_{2} )\rho_{20} ]\, + i[\Omega_{20} (\rho_{00} - \rho_{22} )\, + \,(T_{21} \rho_{10} + \Omega_{23}^{m} \rho_{30} + \Omega_{25} \rho_{25} ) - (A_{10} \rho_{21} \, + \Omega_{30} \rho_{23} + \Omega_{25} \rho_{25} )] $$
(36-8)
$$ \begin{aligned} \rho_{30}^{ \cdot } & = - [(\gamma_{0} + \gamma_{3} )\rho_{30} ] + i[\Omega_{30} (\rho_{00} - \rho_{33} ) + \Omega_{31} \rho_{10} + \Omega_{32}^{m} \rho_{20} \hfill \\ &\quad - A_{10} \rho_{31} + \Omega_{20} \rho_{30} ] \hfill \\ \end{aligned} $$
(36-9)
$$ \rho_{40}^{ \cdot } = - [(\gamma_{4} + \gamma_{0} )\rho_{40} ] + i[\Omega_{40} (\rho_{00} - \rho_{44} )\, + \Omega_{41} \rho_{10} + \Omega_{10}^{{}} \rho_{41} ] $$
(36-10)
$$ \rho_{21}^{ \cdot } = - [(\gamma_{2} + \gamma_{1} )\rho_{21} ] + i[T_{21} (\rho_{11} - \rho_{22} ) + \Omega_{20} \rho_{01} + \Omega_{20}^{{}} \rho_{31} + \Omega_{25} \rho_{51} ] $$
(36-11)
$$ \rho_{23}^{ \cdot } { = } - {[}(\gamma_{2} + \gamma_{3} )\rho_{23} ] + i[\Omega_{23}^{m} (\rho_{33} - \rho_{22} )\, + \Omega_{20} \rho_{03} + T_{21} \rho_{31} + \Omega_{25} \rho_{53} ] $$
(36-12)
$$ \rho_{31}^{ \cdot } { = } - {[}(\gamma_{3} + \gamma_{1} )\rho_{31} ] + i[\Omega_{31} (\rho_{11} - \rho_{33} ) + \,\Omega_{30} \rho_{10} + \Omega_{23}^{m} \rho_{21} - \Omega_{10}^{{}} \rho_{30} + T_{21} \rho_{23} ] $$
(36-13)
$$ \begin{aligned} \rho_{41}^{ \cdot } &= - {[}(\gamma_{4} + \gamma_{1} )\rho_{41} ] + i[\Omega_{41} (\rho_{11} - \rho_{44} )\, + \Omega_{40} \rho_{01} \hfill \\ &\quad +\,Omega_{42} \rho_{21} - A_{10} \rho_{40} + T_{21} \rho_{42} ] \hfill \\ \end{aligned} $$
(36-14)
$$ \rho_{24}^{ \cdot } = - [(\gamma_{4} + \gamma_{2} )\rho_{24} ] + i[\Omega_{20} \rho_{04} + T_{21} \rho_{14} - i\Omega_{04} \rho_{20} + \Omega_{14} \rho_{21} + \Omega_{52} \rho_{25} ] $$
(36-15)
$$ \rho_{25}^{ \cdot } = - [(\gamma_{2} + \gamma_{5} )\rho_{25} ] + i[\Omega_{25} (\rho_{55} + \rho_{22} )\, + \Omega_{23}^{{}} \rho - \Omega_{35} \rho_{23} ] $$
(36-16)
$$ \rho_{35}^{ \cdot } = - [(\gamma_{3} + \gamma_{5} )\rho_{35} ] + i[\Omega_{23}^{m} \rho_{25} \, + \Omega_{35} \rho_{55} - \Omega_{25} \rho_{32} ] $$
(36-17)
$$ \rho_{43}^{ \cdot } = - [(\gamma_{4} + \gamma_{3} )\rho_{43} ] + i[\Omega_{40} \rho_{03} + \Omega_{41} \rho_{13} - \Omega_{03} \rho_{40} \Omega_{13} \rho_{41} - \Omega_{30} \rho_{53} ] $$
(36-18)
$$ \rho_{50}^{ \cdot } = - [(\gamma_{5} + \gamma_{0} )\rho_{50} ] + i[\Omega_{52} \rho_{20} + i\Omega_{53} \rho_{30} - \Omega_{10}^{{}} \rho_{50} - \Omega_{20} \rho_{52} - \Omega_{30} \rho_{53} ] $$
(36-19)
$$ \rho_{51}^{ \cdot } = - [(\gamma_{5} + \gamma_{1} )\rho_{51} ] + i[\Omega_{52} \rho_{20} + \,\Omega_{53} \rho_{30} - \Omega_{10}^{{}} \rho_{50} - T_{21} \rho_{52} - \Omega_{30} \rho_{53} ] $$
(36-20)
$$ \rho_{55}^{ \cdot } = - \gamma_{5} \rho_{55} + i[\Omega_{52} (\rho_{25} - \rho_{52} ) + \Omega_{53} (\rho_{35} - \rho_{53} )] $$
(36-21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Toki, H.G., Al-Khursan, A.H. Negative refraction in the double quantum dot system. Opt Quant Electron 52, 467 (2020). https://doi.org/10.1007/s11082-020-02580-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02580-6

Keywords

Navigation