Skip to main content

Advertisement

Log in

Efficient coupling of light between dielectric and HIMI plasmonic waveguide

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this letter, we investigate a tapered coupler for efficient coupling of light between a planar HIMI plasmonic and dielectric waveguides. The coupler gives an overall transmission efficiency of 98% at optical wavelength of 1550 nm. It offers long propagation length 328 \(\mu \hbox {m}\) at the mode propagation loss of 0.0132 dB/\(\mu \hbox {m}\). The coupler’s efficiency has also been investigated with respect to its important parameters. The entire structure occupies a footprint area of 3\(\times\)1.2 \(\mu \hbox {m}^2\) and it is CMOS compatible with on-chip applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alam, M.Z., Aitchison, J.S., Mojahedi, M.: Theoretical analysis of hybrid plasmonic waveguide. IEEE J. Sel. Topics Quantum Electron. 19, 4602008 (2013)

    Article  ADS  Google Scholar 

  • Chen, C.T., et al.: Design of highly efficient hybrid Si-Au taper for dielectric strip waveguide to plasmonic slot waveguide mode converter. J. Lightwave Technol. 33, 535–540 (2015)

    Article  ADS  Google Scholar 

  • Choi, Sung-Eul: Kim, Jin: Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide. Opt. Commun. 285, 3735–3739 (2012). https://doi.org/10.1016/j.optcom.2012.05.007

    Article  ADS  Google Scholar 

  • Chu, H.-S., Li, E.-P., Bai, P., Hegde, R.: Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl. Phys. Lett. 96, 221103 (2010)

    Article  ADS  Google Scholar 

  • Dabos, G., et al.: Plasmonic stripes in aqueous environment co-integrated with \(\text{Si}_3\text{ N}_4\) photonics. IEEE Photon. J., 10(1): 1–8 (2018). (Art no. 2700108). https://doi.org/10.1109/JPHOT.2018.2792533

  • Dabos, G., et al.: Water cladded plasmonic slot waveguide vertically coupled with \(\text{ Si}_3\text{ N}_4\) photonics. IEEE Photon. J., 10(3): 1–8 (2018). (Art no. 2700308). https://doi.org/10.1109/JPHOT.2018.2832461

  • Dabos, G., Manolis, A., Papaioannou, S., Tsiokos, D., Markey, L., Weeber, J.-C., Dereux, A., Giesecke, A.L., Porschatis, C., Chmielak, B., Pleros, N.: CMOS plasmonics in WDM data transmission: 200 Gb/s (8 x 25Gb/s) transmission over aluminum plasmonic waveguides. Opt. Express 26, 12469–12478 (2018)

    Article  ADS  Google Scholar 

  • Dabos, G., Manolis, A., Tsiokos, D., et al.: Aluminum plasmonic waveguides co-integrated with \(\text{ Si}_3\text{ N}_4\) photonics using CMOS processes. Sci. Rep. 8, 13380 (2018). https://doi.org/10.1038/s41598-018-31736-4

    Article  ADS  Google Scholar 

  • Delacour, C., Blaize, S., Grosse, P., Fedeli, J.M., Bruyant, A., Salas-Montiel, R., Lerondel, G., Chelnokov, A.: Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics. Nano Lett. 10(8), 2922–2926 (2010). https://doi.org/10.1021/nl101065q

    Article  ADS  Google Scholar 

  • Fedyanin, D.Y., Yakubovsky, D.I., Kirtaev, R.V., Volkov, V.S.: Ultralow-loss CMOS copper plasmonic waveguides. Nano Lett. 16, 362–366 (2015). https://doi.org/10.1021/acs.nanolett.5b03942

    Article  ADS  Google Scholar 

  • Fu, Z., Gan, Q., Gao, K., Pan, Z., Bartoli, F.J.: Numerical Investigation of a bidirectional wave coupler based on plasmonic bragg gratings in the near infrared domain. J. Lightwave Technol. 26, 3699–3703 (2008)

    Article  ADS  Google Scholar 

  • Jing, Du: Wang, Jian: Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty terabit-scale data transmission. Opt. Express 25, 30124–30134 (2017)

    Article  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  • Lim, H.J., Kwon, M.S.: Efficient coupling between photonic and dielectric-loaded surface plasmon polariton waveguides with the same core material. IEEE Photonics J. 6, 1–9 (2014)

    Article  Google Scholar 

  • Liu, Y., Lai, Y., Chang, K.: Plasmonic coupler for silicon-based micro-slabs to plasmonic nano-gap waveguide mode conversion enhancement. J. Lightwave Technol. 31, 1708–1712 (2013)

    Article  ADS  Google Scholar 

  • Muhammad, Z., Alam, J., Aitchison, J.S., Mojahedi, M.: A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics 8, 394–408 (2014)

    Article  ADS  Google Scholar 

  • Noghani, M.T., Samiei, M.H.V.: Analysis and optimum design of hybrid plasmonic slab waveguides. Plasmonics 8, 1155–1168 (2013)

    Article  Google Scholar 

  • O’Hara, John F., Averitt, Richard D., Taylor, Antoinette J.: Prism coupling to terahertz surface plasmon polaritons. Opt. Express 13, 6117–6126 (2005)

    Article  ADS  Google Scholar 

  • Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P., Zhang, X.: A hybrid plasmonic waveguide for subwavelength confinement and long-rang propagation. Nature Photon. 2, 496–500 (2008)

    Article  Google Scholar 

  • Patel, V., Sharma, P., Kumar, V.D.: Efficient coupling from dielectric to hybrid plasmonic waveguide using curved taper. IEEE Photon. Technol. Lett. 32, 323–326 (2019)

    Article  ADS  Google Scholar 

  • Sharma, P., Kumar, V.D.: Investigation of multilayer planar hybrid plasmonic waveguide and bends. Electron. Lett. (IET) 52(9), 732–734 (2016). https://doi.org/10.1049/el.2015.3827

    Article  ADS  Google Scholar 

  • Stefan A.: Maier, Plasmonics: Fundamental and Application. Springer, US (2007)

    Google Scholar 

  • Veronis, Georgios, Fan, S.: Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. Opt. Express. 15, 1211–1221 (2007)

  • Wei, L., Aldawsari, S., Liu, W.-K., West, B.R.: Theoretical analysis of plasmonic modes in a symmetric conductor-gap-dielectric structure for nanoscale confinement. IEEE Photon. J. 6, 1–10 (2014)

    Article  Google Scholar 

  • Zhu, B.Q., Tsang, H.K.: High coupling efficiency silicon waveguide to metal-insulator-metal waveguide mode converter. J. Lightwave Technol. 34, 2467–2472 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kritarth Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, K., Dinesh Kumar, V. Efficient coupling of light between dielectric and HIMI plasmonic waveguide. Opt Quant Electron 52, 354 (2020). https://doi.org/10.1007/s11082-020-02456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02456-9

Keywords

Navigation