Skip to main content
Log in

Analysis and Optimum Design of Hybrid Plasmonic Slab Waveguides

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Propagation properties of hybrid plasmonic slab waveguides are studied in detail using transfer matrix method considering structural and material aspects. Hybrid metal–insulator, hybrid metal–insulator–metal, and hybrid insulator–metal–insulator waveguides are considered. Propagation length (L p), spatial length (L s), and mode length (L m) are utilized as three common figures of merit to compare and optimize the waveguides according to the layer thicknesses and metal/dielectric materials. The effect of constituting materials including metals (such as silver, gold, copper, and aluminum) and dielectrics (common dielectric materials used in photonic integrated circuit technologies such as silicon and silicon compounds, III–V compounds, and polymers) are discussed. It is found that hybrid waveguides are partially to completely superior to conventional plasmonic waveguides, providing a better balance between confinement and loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Sarid D (1981) Long-range surface-plasma waves on very thin metal films. Phys Rev Lett 47(26):1927–1930

    Article  CAS  Google Scholar 

  2. Berini P (2001) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures. Phys Rev B63:125417

    Google Scholar 

  3. Lamprecht B, Krenn JR, Schider G, Ditlbacher H, Salerno M, Félidj N, Leitner A, Aussenegg FR, Weeber JC (2001) Surface plasmon propagation in microscale metal stripes. Appl Phys Lett 79:51–53

    Article  CAS  Google Scholar 

  4. Zia R, Selker MD, Catrysse PB, Brongersma MI (2004) Geometries and materials for subwavelength surface plasmon modes. J Opt Soc 21:2442–2446

    Article  Google Scholar 

  5. Zia R, Selker MD, Brongersma MI (2005) Leaky and bound modes of surface plasmon waveguides. Physical Rev B 71:165431

    Article  Google Scholar 

  6. Veronis G, Fan S (2005) Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt Lett 30:3359–3361

    Article  Google Scholar 

  7. Breukelaar I, Charbonneau R, Berini P (2006) Long-range surface plasmon-polariton mode cutoff and radiation. Appl Phys Lett 88:051119

    Article  Google Scholar 

  8. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2007) Channeling surface plasmons. Applied Physics A 89:225–231

    Article  CAS  Google Scholar 

  9. HolmgaardT BS (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Physical Rev B 75:1–12

    Google Scholar 

  10. Krasavin AV, Zayats AV (2007) Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett 90:211101

    Article  Google Scholar 

  11. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics 2:496–500

    Article  CAS  Google Scholar 

  12. Mart A, Garc C, Mart J (2008) Analysis of hybrid dielectric plasmonic waveguides. J Selec Topics Quantum Elec 14:1496–1501

    Article  Google Scholar 

  13. Fujii M, Leuthold J, Freude W (2009) Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photon Technol Lett 21:362–364

    Article  CAS  Google Scholar 

  14. Dai D, He S (2009) A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express 17:16646–16653

    Article  CAS  Google Scholar 

  15. Chu HS, Li EP, Bai P, Hegde R (2010) Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl Phys Lett 96:1–3

    Google Scholar 

  16. Wu M, Van V (2010) Subwavelength silicon hybrid plasmonic waveguides and components. OSA Conf 2:5–6

    Google Scholar 

  17. Song Y, Wang J, Li Q, Yan M, Qiu M (2010) Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Opt Express 18:13173–13179

    Article  CAS  Google Scholar 

  18. Bian Y, Zheng Z, Liu Y, Zhu J, Zhou T (2011) Fabrication-error-tolerant, hybrid wedge plasmon polariton waveguides for ultra-deep-subwavelength mode confinement at 1550 nm wavelength. OSA Conf 2–4

  19. Chu HS, Bai P, Li EP, Hoefer WRJ (2011) Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits. Springer Plasmonics 6:591–597

    Article  CAS  Google Scholar 

  20. Dai D, He S (2010) Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Opt Express 18:2133–2135

    Google Scholar 

  21. Kim JT (2011) CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration. IEEE Photon Technol Lett 23:206–208

    Article  CAS  Google Scholar 

  22. Bian Y, Zheng Z, Zhao X, Zhu J, Zhou T (2009) Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. Opt Express 17:21320–21325

    Article  CAS  Google Scholar 

  23. Kim JT, Ju JJ, Park S, Kim MS, Park SK (2010) Hybrid plasmonic waveguide for low-loss lightwave guiding. Opt Express 18:2808–2813

    Article  CAS  Google Scholar 

  24. Kou Y, Ye F, Chen X (2011) Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration. Opt Express 19:11746–11752

    Article  CAS  Google Scholar 

  25. Ruschin S, Marom E (1984) Coupling effects in symmetrical three-guide structures. J Opt Soc Amer A 1:1120–1128

    Article  Google Scholar 

  26. Schlereth KH, Tacke M (1990) The complex propagation constant of multilayer waveguides: an algorithm for a personal computer. IEEE J Quantum Electron 26:626–630

    Article  Google Scholar 

  27. Sun L, Marhic E (1991) Numerical study of attenuation in multilayer infrared waveguides by the circle-chain convergence method. J Opt Soc Amer B 8:478–483

    Article  CAS  Google Scholar 

  28. Ghatak AK, Thyagarajan K, Shanoy MR (1987) Numerical analysis of planar optical waveguides using matrix approach. J Light Technol 5:660–667

    Article  Google Scholar 

  29. Anemogiannis E, Member S, Glytsis EN, Member S (1992) Multilayer waveguides: efficient numerical analysis of general structures. J Light Technol 10:1344–1351

    Article  Google Scholar 

  30. Maier SA (2006) Plasmonic field enhancement and SERS in the effective mode volume picture. Opt Express 14:1957–1964

    Article  Google Scholar 

  31. Ruppin R (2002) Electromagnetic energy density in a dispersive and absorptive material. Physics Letters A 299:309–312

    Article  CAS  Google Scholar 

  32. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Physical Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  33. Weber MJ (2003) Handbook of optical materials. CRC, Boca Raton

    Google Scholar 

  34. Barnes WL (2006) Surface plasmon–polariton length scales: a route to sub-wavelength optics. J Optics A: Pure Applied Optics 8:S87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Vadjed Samiei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talafi Noghani, M., Vadjed Samiei, M.H. Analysis and Optimum Design of Hybrid Plasmonic Slab Waveguides. Plasmonics 8, 1155–1168 (2013). https://doi.org/10.1007/s11468-013-9526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9526-x

Keywords

Navigation