Skip to main content
Log in

Thermal analysis of VCSEL arrays based on first principle theory and finite element method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

AlxGa1−xAs is a main epitaxial material of 850-nm VCSEL. In order to analyze lattice match and heat production, the band gap of AlxGa1−xAs was built, using the first-principles calculation theory. In addition, based on thermoelectric coupling three-dimensional (3D) finite element method, details on the surface temperature distributions of different 850-nm VCSEL arrays were analyzed. Array spacing and array form have an effect on heat dissipation of VCSEL arrays. The diamond array with 18 light emitting units shows the best thermal stability among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adachi, S.: Lattice thermal resistivity of III–V compound alloys. J. Appl. Phys. 54(4), 1844–1848 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  • Afromowitz, M.A.: Thermal conductivity of Ga1−xAlxAs alloys. J. Appl. Phys. 44(3), 1292–1294 (1973)

    Article  ADS  Google Scholar 

  • Alvarez-Quintana, J., Rodriguez-Viejo, J.: Interfacial effects on the thermal conductivity of a-Ge thin films grown on Si substrates. J. Appl. Phys. 104(7), 074903 (2008)

    Article  ADS  Google Scholar 

  • Baveja, P.P., Kogel, B., Westbergh, P., Gustavsson, J.S., Haglund, A., Maywar, D.N., Agrawal, G.P., Larsson, A.: Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling. Opt. Express 19(16), 15490–15505 (2011)

    Article  ADS  Google Scholar 

  • Briki, M., Abdelouhab, M., Zaoui, A., Ferhat, M.: Relativistic effects on the structural and transport properties of III–V compounds: a first-principles study. Superlattice Microstruct. 45(2), 80–90 (2009)

    Article  ADS  Google Scholar 

  • Chuyu, Z., Xing, Z., Di, L., Yongqiang, N., Lijun, W.: Enhanced thermal stability of VCSEL array by thermoelectric analysis-based optimization of mesas distribution. Chin. Phys. B 26(06), 157–164 (2017)

    Google Scholar 

  • Goetz, K.H., Bimberg, D., Jurgensen, H., Selders, J., Solomonov, A.V., Glinskii, G.F., Razeghi, M.: Optical and crystallographic properties and impurity incorporation Of GaxIn1−xAs (0.44 less-than X less-than 0.49) grown by liquid-phase epitaxy, vapor-phase epitaxy, and metal organic-chemical vapor-deposition. J. Appl. Phys. 54(8), 4543–4552 (1983)

    Article  ADS  Google Scholar 

  • Guo, X., Dong, J., He, X.Y., Hu, S., He, Y., Lv, B.S., Li, C.: Heat dissipation effect on modulation bandwidth of high-speed 850-nm VCSELs. J. Appl. Phys. 121(13), 133105 (2017)

    Article  ADS  Google Scholar 

  • Hirata, T., Iio, S., Suehiro, M., Hihara, M., Suhara, T., Uemukai, M., Taniguchi, T., Nishihara, H.: Integration of laser-diodes and photodiodes in photonic integrated-circuit for measurement. Jpn. J. Appl. Phys. 2 34(10A), L1288–L1290 (1995)

    Article  Google Scholar 

  • Hu, C., Kiene, M., Ho, P.S.: Thermal conductivity and interfacial thermal resistance of polymeric low k films. Appl. Phys. Lett. 79(25), 4121–4123 (2001)

    Article  ADS  Google Scholar 

  • Kuksenkov, D.V., Temkin, H., Swirhun, S.: Measurement of internal quantum efficiency and losses in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 66(14), 1720–1722 (1995)

    Article  ADS  Google Scholar 

  • Lu, H.H., Li, C.Y., Chu, C.A., Lu, T.C., Chen, B.R., Wu, C.J., Lin, D.H.: 10 m/25 Gbps LiFi transmission system based on a two-stage injection-locked 680 nm VCSEL transmitter. Opt. Lett. 40(19), 4563–4566 (2015)

    Article  ADS  Google Scholar 

  • Mackenzie, R., Lim, J.J., Bull, S., Sujecki, S., Larkins, E.C.: Inclusion of thermal boundary resistance in the simulation of high-power 980 nm ridge waveguide lasers. Opt. Quantum Electron. 40(5–6), 373–377 (2008)

    Article  Google Scholar 

  • Moench, H., Deppe, C., Dumoulin, R., Gronenborn, S., Gu, X., Heusler, G., Miller, M., Pekarski, P., Pruijmboom, A.: Modular VCSEL solution for uniform line illumination in the kw range. In: Zediker, M.S. (ed.) High-Power Diode Laser Technology And Applications X, vol. 8241, p. 82410b. SPIE Publications, Washington (2012)

    Google Scholar 

  • Ouchi, T.: Thermal analysis of thin-film vertical-cavity surface-emitting lasers using finite element method. Jpn. J. Appl. Phys. 1 41(8), 5181–5186 (2002)

    Article  Google Scholar 

  • Seurin, J.F., Xu, G.Y., Wang, Q., Guo, B.M., Van Leeuwen, R., Miglo, A., Pradhan, P., Wynn, J.D., Khalfin, V., Ghosh, C.: High-brightness pump sources using 2D VCSEL arrays. In: Guenter, J.K., Choquette, K.D. (eds.) Vertical-Cavity Surface-Emitting Lasers XIV, vol. 7615, p. 76150f. SPIE Publications, Washington (2010)

    Chapter  Google Scholar 

  • Shen, Y., Yang, X.D., Bian, Y., Liu, S.M., Tang, K., Zhang, R., Zheng, Y.D., Gu, S.L.: First principles study on the structural stability and optoelectronic properties of InxGa1−xAs materials with different Indium component. Mater. Res. Express 5(1), 015912 (2018)

    Article  ADS  Google Scholar 

  • Sotoodeh, M., Khalid, A.H., Rezazadeh, A.A.: Empirical low-field mobility model for III–V compounds applicable in device simulation codes. J. Appl. Phys. 87(6), 2890–2900 (2000)

    Article  ADS  Google Scholar 

  • Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  ADS  Google Scholar 

  • Wang, J.H., Savidis, I., Friedman, E.G.: Thermal analysis of oxide-confined VCSEL arrays. Microelectron. J. 42(5), 820–825 (2011)

    Article  Google Scholar 

  • Zhang, X.W., Liu, B.Y., Shi, K., Han, F., Chen, H.C., Nie, L., Yu, X.: A thermal analysis of stable-polarization VCSELs. Optik 157, 203–207 (2018)

    Article  ADS  Google Scholar 

  • Zhou, D.L., Seurin, J.F., Xu, G.Y., Van Leeuwen, R., Miglo, A., Wang, Q., Kovsh, A., Ghosh, C.: Progress on high-power 808 nm VCSELs and applications. Proc. SPIE 101(22), 1012206 (2017)

    Article  Google Scholar 

  • Zhu, S.L., Chen, L., Zhang, S.Q., He, M.Y., Yin, L., Qian, Y.S.: Inference comparison for microscopic properties of Ga0.37Al0.63As and macroscopic properties of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes with femtosecond laser. Optik 157, 968–975 (2018). https://doi.org/10.1016/j.ijleo.2017.11.105

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation (Grant Nos. 61505003, 61674140), National Key Research and Development Program of China (Grant Nos. 2016YFB0402502, 2017YFF0104803 and 2017YFB0305800), and Beijing education commission project (SQKM201610005008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, C., Dai, J. et al. Thermal analysis of VCSEL arrays based on first principle theory and finite element method. Opt Quant Electron 51, 196 (2019). https://doi.org/10.1007/s11082-019-1909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1909-6

Keywords

Navigation