Skip to main content
Log in

All solid quasi-single material supermode microstructure fiber with flattened dispersion and single mode transmission

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An all solid quasi-single material microstructure fiber (AS-QSM-MSF) with flattened dispersion and single mode transmission is presented in this paper. Besides microstructured cladding, six-core configuration is also employed to incorporate mode coupling mechanism into light transmission control in our proposed fiber. By doing this, flattened dispersion in the range of − 1.03–0.75 ps/(nm km) can be achieved from 1.52 to 2.01 μm, while refractive index difference Δn between matrix and doped inclusions is less than 0.016. Numerical results also show that the fundamental supermode has a flat top power density distribution with effective mode area 48.4 μm2 at 1.55 μm. Compared with the fibers of Gaussian power distribution, our fiber has a more uniform power distribution, which means that our fiber is less susceptible to nonlinear effect under same input power and effective mode area. In addition, simulation results show that the proposed AS-QSM-MSF has a wide single mode regime with cutoff wavelength at 1.197 μm. And the confinement loss and bending loss of the fiber at 45 mm bending radius are as low as 2.6 × 10−7 dB/km and 9.7 × 10−2 dB/km at 1.55 μm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Birks, T.A., Knight, J.C., Russel, P.S.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  • Boskovic, A., Chernikov, S.V., Taylor, J.R., Gruner-Nielsen, L., Levring, O.A.: Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm. Opt. Lett. 21, 1966–1968 (1996)

    Article  ADS  Google Scholar 

  • Brackett, C.: Dense wavelength division multiplexing networks: principles and applications. IEEE J. Sel. Areas Commun. 8, 948–964 (1990)

    Article  ADS  Google Scholar 

  • Goel, A., Pandey, G.: Design of broadband dispersion flattened fiber for DWDM system: performance analysis using various modulation formats. Opt. Fiber Technol. 42, 109–118 (2018)

    Article  ADS  Google Scholar 

  • Hsu, J.M.: Tailoring of nearly zero flattened dispersion photonic crystal fibers. Opt. Commun. 361, 104–109 (2016)

    Article  ADS  Google Scholar 

  • Klimczak, M., Siwicki, B., Skibiński, P., Pysz, D., Stępień, R., Heidt, A., Radzewicz, C., Buczyński, R.: Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion. Opt. Express 22, 18824–18832 (2014)

    Article  ADS  Google Scholar 

  • Klimczak, M., Siwicki, B., Zhou, B., Bache, M., Pysz, D., Bang, O., Buczyński, R.: Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers. Opt. Express 24, 29406–29416 (2016)

    Article  ADS  Google Scholar 

  • Lee, S., Ha, W., Park, J., Kim, S., Oh, K.: A new design of low-loss and ultra-flat zero dispersion photonic crystal fiber using hollow ring defect. Opt. Commun. 285, 4082–4087 (2012)

    Article  ADS  Google Scholar 

  • Liu, X., Feng, X.: Weighted nonlinear phase shift with group velocity dispersion to assess the nonlinear penalty in C + L band long-haul fiber optical amplified transmission link. Chin. Opt. Lett. 6, 483–486 (2008)

    Article  Google Scholar 

  • Liu, J., Zhang, J., Han, J., Gao, G., Zhao, Y., Gu, W.: Design and optimization of with low weakly-coupled few-mode fiber nonlinearity. Chin. Opt. Lett. 12, 8–10 (2014)

    Google Scholar 

  • Maji, P.S., Chaudhuri, P.R.: Gain and bandwidth investigation in a near-zero ultra-flat dispersion PCF for optical parametric amplification around the communication wavelength. Appl. Opt. 54, 3263–3272 (2015)

    Article  ADS  Google Scholar 

  • Marcuse, D.: Interdependence of waveguide and material dispersion. Appl. Opt. 18, 2930–2932 (1979)

    Article  ADS  Google Scholar 

  • Matsui, T., Zhou, J., Nakajima, K., Sankawa, I.: Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss. J. Lightwave Technol. 23, 4178–4183 (2006)

    Article  ADS  Google Scholar 

  • Mogilevtsev, D.T., Birks, A., Russell, P.S.: Group-velocity dispersion in photonic crystal fibers. Opt. Lett. 23, 1662–1664 (1998)

    Article  ADS  Google Scholar 

  • Nielsen, M., Mortensen, N.: Photonic crystal fiber design based on the V-parameter. Opt. Express 11, 2762–2768 (2003)

    Article  ADS  Google Scholar 

  • Ren, W., Tan, Z.: A study on the coupling coefficients for multi-core fibers. Opt. Int. J. Light Electron Opt. 127, 3248–3252 (2016)

    Article  Google Scholar 

  • Selleri, S., Vincetti, L., Cucinotta, A., Zoboli, M.: Complex FEM modal solver of optical waveguides with PML boundary conditions. Opt. Quantum. Electron. 33, 359–371 (2001)

    Article  Google Scholar 

  • Siwicki, B., Klimczak, M., Stępień, R., Buczyński, R.: Supercontinuum generation enhancement in all-solid all-normal dispersion soft glass photonic crystal fiber pumped at 1550 nm. Opt. Fiber Technol. 25, 64–71 (2015)

    Article  ADS  Google Scholar 

  • Steel, M.J., White, T.P., Martijn, D.S.C., McPhedran, R.C., Botten, L.C.: Symmetry and degeneracy in microstructured optical fibers. Opt. Lett. 26, 488–490 (2001)

    Article  ADS  Google Scholar 

  • Tatian, B.: Fitting refractive-index data with the Sellmeier dispersion formula. Appl. Opt. 23, 4477–4485 (1984)

    Article  ADS  Google Scholar 

  • Wang, Z., Ye, J., Zhao, C., Zhang, Z., Wang, J., Zhang, S., Jin, S.: Design of large-mode-area single-mode optical fiber with lowing bending loss for Raman distributed temperature sensor. Opt. Fiber Technol. 19, 671–676 (2013)

    Article  ADS  Google Scholar 

  • Xia, C., Bai, N., Ozdur, I., Zhou, X., Li, G.: Supermodes for optical transmission. Opt. Express 19, 16653–16664 (2011)

    Article  ADS  Google Scholar 

  • Yoda, H., Polynkin, P., Mansuripur, M.: Beam quality factor of higher order modes in a step-index fiber. J. Lightwave Technol. 24, 1350–1355 (2006)

    Article  ADS  Google Scholar 

  • Zhang, F., Liu, X., Zhang, M., Ye, P.: A novel design for single-polarization single-mode photonic crystal fiber at 1550 nm. Chin. Opt. Lett. 5, 260–263 (2007)

    ADS  Google Scholar 

  • Zheng, S., Ren, G., Lin, Z., Jian, S.: Mode-coupling analysis and trench design for large-mode-area low-cross-talk multicore fiber. Appl. Opt. 52, 4541–4548 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We sincerely thank our anonymous reviewers for their thoughtful suggestions. This work is supported by the Open Subject of Jiangsu Key Laboratory of Meteorological Observation and Information Processing (KDXS1107) and National Natural Science Foundation of China (61735011) and Natural Science Foundation of Hebei Province (F2016203389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Qiu, S., Lin, T. et al. All solid quasi-single material supermode microstructure fiber with flattened dispersion and single mode transmission. Opt Quant Electron 50, 428 (2018). https://doi.org/10.1007/s11082-018-1679-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1679-6

Keywords

Navigation