Skip to main content
Log in

The modify unstable nonlinear Schrödinger dynamical equation and its optical soliton solutions

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this research, we work on a specific class of nonlinear evolution equation which is the modify unstable nonlinear Schrödinger equation. This equation is used to describe a time evolution of disturbances in unstable media. Various solutions have been obtained. The results deduced are of varied types and include bright solution, dark solution, rational dark-bright solution, as well as cnoidal solutions. These solutions might be useful in engineering fields. Some conditions for the stability of these solutions are presented. The method used here is understandable and very powerful for solving the nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdoulkary, S., Mohamadou, A., Dafounansou, O., Doka, S.Y.: Exact solutions of the nonlinear differential-difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G’/G)-expansion method. Chin. Phys. B 23, 120506 (2014)

    Article  Google Scholar 

  • Abdullah, A., Seadawy, A.R., Wang, J.: Modified KdV-Zakharov-Kuznetsov dynamical equation in a homogeneous magnetised electron-positron-ion plasma and its dispersive solitary wave solutions. Pramana J. Phys. 91, 26 (2018)

  • Abdul-Majid, W.: The tanh method for travelling wave solutions to the Zhiber–Shabat equation and other related equations. Commun. Nonlinear Sci. Numer. Simul. 13, 584–592 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Arbabi, S., Najafi, M.: Exact solitary wave solutions of the complex nonlinear Schrödinger equations. Optik 127, 4682–4688 (2016)

    Article  ADS  Google Scholar 

  • Arshad, M., Seadawy, A.R., Lu, D.: Optical soliton solutions of the generalized higher-order nonlinear Schrödinger equations and their applications. Opt. Quantum Electron. 49, 421 (2017a)

  • Arshad, M., Seadawy, A.R., Lu, D., Wang, J.: Modulation instability analysis of modify unstable nonlinear schrodinger dynamical equation and its optical soliton solutions. Results Phys. 7, 4153–4161 (2017b)

    Article  ADS  Google Scholar 

  • Bekir, A., Kaplan, M.: Exponential rational function method for solving nonlinear equations arising in various physical models. Chin. J. Phys. 54, 365–370 (2016)

    Article  MathSciNet  Google Scholar 

  • Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Helal, M.A., Seadawy, A.R.: Exact soliton solutions of an D-dimensional nonlinear Schrodinger equation with damping and diffusive terms. Z. Angew. Math. Phys. 62, 839–847 (2011)

    Article  MathSciNet  Google Scholar 

  • Inc, M., Evans, D.J.: On travelling wave solutions of some nonlinear evolution equations. Int. J. Comput. Math. 81, 191–202 (2004)

    Article  MathSciNet  Google Scholar 

  • Lian-Li, F., Shou-Fu, T., Hui, Y., Li, W., Tian-Tian, Z.: On periodic wave solutions and asymptotic behaviors to a generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation. Eur. Phys. J. Plus 131, 241 (2016)

  • Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • Lu, D., Seadawy, A.R., Arshad, M., Wang, J.: New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov–Kuznetsov and modified KdV-Zakharov–Kuznetsov equations and their applications. Results Phys. 7, 899–909 (2017)

    Article  ADS  Google Scholar 

  • Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • Malwe, B.H., Gambo, B., Doka, S.Y., Kofane, T.C.: Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn. 84, 171 (2016)

    Article  MathSciNet  Google Scholar 

  • Manafian, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan(\(\phi\)/2)-expansion method. Optik 127, 4222–4245 (2016)

    Article  ADS  Google Scholar 

  • Manaflan, J., Lakestani, M.: Abundant soliton solutions for the Kundu–Eckhaus equation via tan(\(\phi\)/2)-expansion method. Optik 127, 5543–5551 (2016)

    Article  ADS  Google Scholar 

  • Pawlik, M., Rowlands, G.: The propagation of solitary waves in piezoelectric semiconductors. J. Phys. C 8, 1189–204 (1975)

    Article  ADS  Google Scholar 

  • Seadawy, A.R.: Approximation solutions of derivative nonlinear Schrödinger equation with computational applications by variational method. Eur. Phys. J. Plus 130, 182 (2015)

  • Seadawy, A.R.: Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions. J. Electromagn. Waves Appl. 31, 1353–1362 (2017a)

    Article  MathSciNet  Google Scholar 

  • Seadawy, A.R.: The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrodinger equation and its solutions. Optik Int. J. Light Electron Opt. 139, 31–43 (2017b)

    Article  Google Scholar 

  • Seadawy, A.R.: Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev–Petviashvili–Burgers equation in quantum plasma. Math. Methods Appl. Sci. 40(5), 1598–1607 ( 2017c)

    Article  ADS  MathSciNet  Google Scholar 

  • Seadawy, A.R., Lu, D.: Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrödinger equation and its stability. Results Phys. 7, 43–48 (2017)

    Article  ADS  Google Scholar 

  • Seadawy, A.R.,  Manafian, J.: New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod. Results Phys. 8, 1158–1167 (2018)

    Article  ADS  Google Scholar 

  • Tala-Tebue, E., Tsobgni-Fozap, D.C., Kenfack-Jiotsa, A., Kofane, T.C.: Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G\(^{\prime }\)/G)-expansion method including the generalized Riccati equation. Eur. Phys. J. Plus 129, 136 (2014)

  • Tala-Tebue, E., Djoufack, Z.I., Fendzi-Donfack, E., Kenfack-Jiotsa, A., Kofane, T.C.: Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi elliptic function rational expansion method and the exponential rational function method. Optik 127, 11124–11130 (2016)

    Article  ADS  Google Scholar 

  • Tala-Tebue, E., Djoufack, Z.I., Tsobgni-Fozap, D.C., Kenfack-Jiotsa, A., Kapche-Tagne, F., Kofané, T.C.: Traveling wave solutions along microtubules and in the Zhiber–Shabat equation. Chin. J. Phys. 55, 939–946 (2017)

    Article  Google Scholar 

  • Tala-Tebue, E., Seadawy, A.R., Kamdoum-Tamo, P.H., Lu, D.: Dispersive  optical soliton solutions of the higher order nonlinear Schrodinger dynamical equation via two different methods and its applications. Euro. Phys. J. Plus 133: 289 (2018a)

  • Tala-Tebue, E., Djoufack, Z.I., Djimeli-Tsajio, A., Kenfack-Jiotsa, A.: Solitons and other solutions of the nonlinear fractional Zoomeron equation. Chin. J. Phys. 56, 1232–1246 (2018b)

    Article  Google Scholar 

  • Triki, H., Biswas, A., Milović, D., Belić, M.: Chirped optical solitons in birefringent fibers with parabolic law nonlinearity and four-wave mixing. Actc Phys. Pol. A 130, 718–726 (2016)

    Article  Google Scholar 

  • Wang, M.L.: Solitary wave solutions for the variant Boussinesq equations. Phys. Lett. A 199, 169–172 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  • Wang, M.L., Li, X.Z.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Yan, Z.Y.: Abundant families of Jacobi elliptic functions of the (2 + 1) dimensional integrable Davey–Stawartson-type equation via a new method. Chaos Solitons Fractals 18, 299–309 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhao, H., Han, J.G., Wang, W.T., AN, H.Y.: Applications of extended hyperbolic function method for quintic discrete nonlinear Schrödinger equation. Commun. Theor. Phys. 47, 474–478 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aly R. Seadawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tala-Tebue, E., Seadawy, A.R. & Djoufack, Z.I. The modify unstable nonlinear Schrödinger dynamical equation and its optical soliton solutions. Opt Quant Electron 50, 380 (2018). https://doi.org/10.1007/s11082-018-1642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1642-6

Keywords

Navigation