Skip to main content

Advertisement

Log in

Genetic algorithm design for E-plane waveguide filters

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a new approach has been proposed to design any arbitrary E-plane filters, including band-pass, and band-stop filters, with a desired frequency response. The proposed method is based on replacing all conventional resonators with a new form of a resonator, which is made of a patterned plane. The patterned plane is a metal plane with infinitesimal thickness that some of its parts, are removed. The introduced patterned plane is supported by a thin and low permittivity dielectric slab, and is located longitudinally in the middle of a rectangular waveguide, parallel to the E-plane. To design the proposed filters, the scattering parameters of the structure should be calculated. For this purpose, a coupled set of electric field integral equations have been derived, and solved by method of moments. Then, a suitable cost function was defined, and optimized using genetic algorithm. MATLAB GA tool has been used to optimize the cost function. The proposed method facilitates and accelerates the optimization process in comparison to full wave simulator software. As examples, both band-pass, and band-stop E-plane filters have been designed. The results show that the proposed filter, in comparison to the conventional filters, has some advantages, such as frequency band selectivity, compactness, and the ability of adjustment to any desired frequency response. The results of designed structures are validated by HFSS simulator software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arndt, F., Heckmann, D., Semmerow, H., et al.: Stop band optimized E-plane filters with multiple metal inserts of variable number per coupling element. IEE Proc. 133, 169–174 (1986)

    Google Scholar 

  • Budimir, D.: Optimized e-plane band pass filters with improved stop band performance. IEEE Trans. Microw. Theory Tech. 45, 212–220 (1997)

    Article  ADS  Google Scholar 

  • Collin, R.E.: Foundations for Microwave Engineering. McGraw-Hill, New York (1996)

    Google Scholar 

  • Ghajar, A., Ghorbaninejad, H.: Compact microwave impedance matching using patterned conducting planes. Appl. Comput. Electromagn. Soc. J. 30, 540–545 (2015)

    Google Scholar 

  • Ghorbaninejad-Foumani, H., Khalaj-Amirhosseini, M.: Compact spatial band-pass filters using frequency selective surfaces. Prog. Electromagn. Res. C 21, 59–73 (2011)

    Article  Google Scholar 

  • Goussetis, G., Budimir, D.: Novel periodically loaded E-plane filters. IEEE Microw. Wirel. Comp. Lett. 13, 193–195 (2003)

    Article  Google Scholar 

  • Konishi, Y., Uenakada, K.: The design of a band-pass filter with inductive strip-planar circuit mounted in waveguide. IEEE Trans. Microw Theory Tech 22, 869–873 (1974)

    Article  ADS  Google Scholar 

  • Kozakowski, P., Deleniv, A.: New resonator arrangement for reduced size E-plane filters, microwave symposium digest (MTT). 2011 IEEE MTT-S Int., 1–4 (2011)

  • Mansour, R.R., Fouladian, J.: Analysis and design of extracted pole E-plane filters. Microw. Opt. Technol. Lett. 2, 286–291 (1989)

    Article  ADS  Google Scholar 

  • Matthaei, G., Young, L., Jones, E.M.T.: Band-Stop Filters: Microwave Filters, Impedance Matching Networks and Coupling Structures, Artech House. Mass, Dedham (1980)

    Google Scholar 

  • Montejo-Garai, J.R., Ruiz-Cruz, J., Rebollar, J.M., et al.: In-line pure E-plane waveguide band-stop filter with wide spurious-free response. IEEE Microw. Wirel. Comp. Lett. 21, 209–211 (2011)

    Article  Google Scholar 

  • Ofli, E., Vahldieck, R., Amari, S.: Novel E-plane filters and diplexers with elliptic response for millimeter-wave applications. IEEE Trans. Microw. Theory Tech. 53, 843–851 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ghajar.

Appendix

Appendix

The electric dyadic Green’s functions derived as follows.

$$G_{yy} = \mathop \sum \limits_{m = 0} \mathop \sum \limits_{n = 0} \frac{{\varepsilon_{m} \varepsilon_{n} }}{{2j\omega \varepsilon_{0} ab\varGamma_{mn} }}\left\{ {\left( {k_{0}^{2} - k_{y}^{2} } \right)\sin \left( {k_{x} x} \right)\cos \left( {k_{y} y} \right)\sin \left( {k_{x} x'} \right)\cos \left( {k_{y} y'} \right)\exp \left( { - \varGamma_{mn} \left| {z - z'} \right|} \right)} \right\}$$
(22)
$$G_{xz} = \mp \mathop \sum \limits_{m = 0} \mathop \sum \limits_{n = 0} \frac{{\varepsilon_{m} \varepsilon_{n} }}{{2j\omega \varepsilon_{0} ab\varGamma_{mn} }}\left\{ {\varGamma_{mn} k_{y} \sin \left( {k_{x} x} \right)\cos \left( {k_{y} y} \right)\sin \left( {k_{x} x'} \right)\sin \left( {k_{y} y'} \right)\exp \left( { - \varGamma_{mn} \left| {z - z'} \right|} \right)} \right\}$$
(23)
$$G_{zx} = \pm \mathop \sum \limits_{m = 0} \mathop \sum \limits_{n = 0} \frac{{\varepsilon_{m} \varepsilon_{n} }}{{2j\omega \varepsilon_{0} ab\varGamma_{mn} }}\left\{ {\varGamma_{mn} k_{y} \sin \left( {k_{x} x} \right)\sin \left( {k_{y} y} \right)\sin \left( {k_{x} x'} \right)\cos \left( {k_{y} y'} \right)\exp \left( { - \varGamma_{mn} \left| {z - z'} \right|} \right)} \right\}$$
(24)
$$G_{zz} = \mathop \sum \limits_{m = 0} \mathop \sum \limits_{n = 0} \frac{{\varepsilon_{m} \varepsilon_{n} }}{{2j\omega \varepsilon_{0} ab\varGamma_{mn} }}\left\{ {\sin \left( {k_{x} x} \right)\sin \left( {k_{y} y} \right)\sin \left( {k_{x} x'} \right)\sin \left( {k_{y} y'} \right)\left[ {\left( {\varGamma_{mn}^{2} + k_{0}^{2} } \right) - \,2\varGamma_{mn} \delta \left( {z - z'} \right)} \right]\exp \left( { - \varGamma_{mn} \left| {z - z'} \right|} \right)} \right\}$$
(25)

where \(\varGamma_{mn} = \sqrt {\left( {m\pi /a} \right)^{2} + \left( {n\pi /b} \right)^{2} - k_{0}^{2} }\) is the propagation constant, \(k_{0}^{2} = \omega^{2} \mu_{0} \varepsilon_{0}\), \(k_{x} = m\pi /a\), and \(k_{y} = n\pi /b\). In Eqs. 22, 23, upper and lower sign corresponds to \(z \ge z',\) and \(z < z'\) respectively and the Neumann factor \(\varepsilon_{n}\) is given by:

$$\varepsilon_{n} = \left\{ {\begin{array}{*{20}c} {1, n = 0} \\ {2, n \ne 0} \\ \end{array} } \right.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbaninejad, H., Ghajar, A. Genetic algorithm design for E-plane waveguide filters. Opt Quant Electron 48, 468 (2016). https://doi.org/10.1007/s11082-016-0743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0743-3

Keywords

Navigation