Skip to main content
Log in

Design of Metasurface-Based Multi-layer THz Filters Utilizing Optimization Algorithm with Distinct Fitness Function Definitions

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, an evolutionary optimization procedure is presented to generate band-pass metasurface-based filters in terahertz regime. As a measure of novelty, pass-band, transition, and out-band characteristics are investigated separately, all of which result in different metasurfaces for filtering applications. The presented approach is defined based on random hill climbing algorithm, regarding the established link between Matlab and HFSS software. A metasurface-based filter with specific properties is considered as the main problem to be solved by the optimization method. Moreover, the fuzzy theory, mean square method, and weighting coefficient procedure are considered to define an efficient fitness function evaluation approach. Also, a step-by-step procedure is used to generate desired structures with a great note of efficiency. The final generated structure has magnificent characteristics including sharp transitions together with transmittance around 0.68 and less than 0.04 at pass-band and out-band regions, respectively. Also, the generated metasurface benefits from wide bandwidth (65%) and great compactness compared to other previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of Data and Material

The utilized data and materials are included within the manuscript.

Code Availability

The utilized codes are available on request, if needed.

References

  1. Wiltse JC (1984) History of millimeter and submillimeter waves. IEEE Trans Microw Theory Tech 32:1118–1127

    Article  Google Scholar 

  2. Dragoman D, Dragoman M (2004) Terahertz fields and applications. Prog Quantum Electron 28:1–66

    Article  CAS  Google Scholar 

  3. Kleine-Ostmann T, Nagatsuma T (2011) A review on terahertz communications research. J Infrared Millim Terahertz Waves 32:143–171

    Article  Google Scholar 

  4. Federici J, Moeller L (2010) Review of terahertz and subterahertz wireless communications. J Appl Phys 107:6

    Article  Google Scholar 

  5. Kawase K, Ogawa Y, Watanabe Y, Inoue H (2003) Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express 11:2549–2554

    Article  CAS  Google Scholar 

  6. Luo X, Zhai X, Wang L, Lin Q, Liu J (2017) Tunable terahertz narrow-band plasmonic filter based on optical Tamm plasmon in dual-section InSb slot waveguide. Plasmonics 12:509–514

    Article  CAS  Google Scholar 

  7. Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11:69

    Article  CAS  Google Scholar 

  8. Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 16:7181–7188

    Article  Google Scholar 

  9. Zhang Y, Li T, Zeng B, Zhang H, Lv H, Huang X, Zhang W, Azad AK (2015) A graphene based tunable terahertz sensor with double Fano resonances. Nanoscale 7:12682–12688

    Article  CAS  Google Scholar 

  10. Nemat-Abad HM, Zareian-Jahromi E, Basiri R (2019) Design and equivalent circuit model extraction of a third-order band-pass frequency selective surface filter for terahertz applications. Int J Eng Sci Technol 22(3):862–868

    Google Scholar 

  11. Chen CY, Pan CL, Hsieh CF, Lin YF, Pan RP (2006) Liquid-crystal-based terahertz tunable Lyot filter. Appl Phys Lett 88:101107

    Article  Google Scholar 

  12. Correas-Serrano D, Gomez-Diaz JS, Perruisseau-Carrier J, Alvarez-Melcon A (2014) Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans Nanotechnol 13:1145–1153

    Article  Google Scholar 

  13. Moazami A, Hashemi M, Cheraghi Shirazi N (2019) High efficiency tunable graphene-based plasmonic filter in the THz frequency range. Plasmonics 14:359–363

    Article  CAS  Google Scholar 

  14. Ebrahimi A, Nirantar S, Withayachumnankul W, Bhaskaran M, Sriram S, Al-Sarawi SF, Abbott D (2015) Second-order terahertz bandpass frequency selective surface with miniaturized elements. IEEE Trans Terahertz Sci Technol 5:761–769

    Article  CAS  Google Scholar 

  15. Zareian-Jahromi E, Shahabadi M (2008) Investigation of the effect of conductor loss and mismatch on the tunneling through frequency selective surfaces. IEEE Int Conf Microw Mill Wave Technol 535–538

  16. Butt H, Dai Q, Farah P, Butler T, Wilkinson TD, Baumberg JJ, Amaratunga GA (2010) Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes. Appl Phys Lett 97:163102

    Article  Google Scholar 

  17. Li X, Yang L, Hu C, Luo X, Hong M (2011) Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency. Opt Express 19:5283–5289

    Article  CAS  Google Scholar 

  18. Lan F, Yang Z, Qi L, Gao X, Shi Z (2014) Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures. Opt Lett 39:1709–1712

    Article  Google Scholar 

  19. Han NR, Chen ZC, Lim CS, Ng B, Hong MH (2011) Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt Express 19:6990–6998

    Article  CAS  Google Scholar 

  20. Fallahi A, Mishrikey M, Hafner C, Vahldieck R (2008) Efficient procedures for the optimization of frequency selective surfaces. IEEE Trans Antennas Propag 56:1340–1349

    Article  Google Scholar 

  21. Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. John Wiley & Sons

    Book  Google Scholar 

  22. Salehi M, Behdad N (2008) A second-order dual X-/Ka-band frequency selective surface. IEEE Microwave Wirel Compon Lett 18:785–787

    Article  Google Scholar 

  23. Li JS, Li Y, Zhang L (2018) Terahertz bandpass filter based on frequency selective surface. IEEE Photonics Technol Lett 30:238–241

    Article  CAS  Google Scholar 

  24. Chiang YJ, Yang CS, Yang YH, Pan CL, Yen TJ (2011) An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Appl Phys Lett 99:191909

    Article  Google Scholar 

  25. Torabi ES, Fallahi A, Yahaghi A (2017) Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption. IEEE Trans Antennas Propag 65:1464–1467

    Article  Google Scholar 

  26. Lehmann EL, Casella G (2006) Theory of point estimation. Springer Science & Business Media

  27. Niknam T, Kavousifard A, Aghaei J (2012) Scenario-based multi objective distribution feeder reconfiguration considering wind power using adaptive modified particle swarm optimisation. IET Renew Power Gener 6:236–247

    Article  Google Scholar 

  28. Niknam T, Meymand HZ, Mojarrad HD (2011) An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants. Energy 36:119–132

    Article  Google Scholar 

  29. Ohira M, Deguchi H, Tsuji M, Shigesawa H (2004) Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique. IEEE Trans Antennas Propag 52:2925–2931

    Article  Google Scholar 

  30. Lu M, Li W, Brown ER (2011) Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures. Opt Lett 36:1071–1073

    Article  Google Scholar 

  31. Ri-Hui X, Jiu-Sheng L (2018) Double-layer frequency selective surface for terahertz bandpass filter. J Infrared Millim Terahertz Waves 1–8

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in preparing the manuscript.

Corresponding author

Correspondence to Ehsan Zareian-Jahromi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemat-Abad, H.M., Zareian-Jahromi, E. & Basiri, R. Design of Metasurface-Based Multi-layer THz Filters Utilizing Optimization Algorithm with Distinct Fitness Function Definitions. Plasmonics 16, 1865–1876 (2021). https://doi.org/10.1007/s11468-021-01450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01450-5

Keywords

Navigation