Skip to main content
Log in

Broadband and polarization insensitive design of terahertz absorber with high-index contrast grating on SOI chip

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Simple design of a broadband terahertz absorber consisting of a high-index contrast grating (HCG) on a silicon-on-insulator chip is proposed. Large absorption (98.4 %) over a wavelength range of 66–84 \(\upmu \hbox {m}\) is obtained for normal incidence with large fabrication tolerance (\(14\,\upmu \hbox {m}\) grating period tolerance for grating height of \(2.6\,\upmu \hbox {m}\)). The absorption remains high (\(\sim \)98 %) for wide range of angle of incidence from \(0^{\circ }\) (normal incidence) to \(60^{\circ }\). The bandwidth of high absorption (\(\sim \)98 %) is also large i.e. \(40\,\upmu \hbox {m}\) over a wide range of angle of incidence from \(0^{\circ }\) to \(60^{\circ }\). The proposed broadband terahertz absorber also exhibits the design flexibility for the realization of polarization insensitivity with respect to the incident light of arbitrary polarizations. The proposed structure is easy-to-fabricate with a large fabrication tolerance which may provide a desirable broadband absorption for practical applications in terahertz devices. The proposed absorber is designed using rigorous coupled wave analysis and the results are in good agreement (with a maximum difference of 0.6 % in absorption) with those obtained with finite difference time domain method. The proposed characteristics of the device arise from the wavelength scalability and broadband nature of the HCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bienstman, P., Vandersteegen, P., Baets, R.: Modelling gratings on either side of the substrate for light extraction in light-emitting diodes. Opt. Quantum Electr. 39(10–11), 797–804 (2007)

    Article  Google Scholar 

  • Chan, D.L.C., Soljacic, M., Joannopoulos, J.D.: Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006)

    Article  ADS  Google Scholar 

  • Chang-Hasnain, C.J., Yang, W.: High contrast grating for integrated optoelectronics. Adv. Opt. Photon. 4, 379–440 (2012). doi:10.1364/AOP.4.000379

    Article  Google Scholar 

  • Chang-Hasnain, C.J., Zhou, Y., Michael, Huang, C.Y., Chase, C.: High contrast grating VCSELs. IEEE J. Sel. Top. Quant. Elect. 15(3), 869–878 (2009)

  • Chase, C., Rao, Y., Hoffmann, W., Chang-Hasnain, C.J.: 1550 nm high contrast grating VCSEL. Opt. Express 18(15), 15461–15466 (2010)

    Article  ADS  Google Scholar 

  • Chen, H.T., Padilla, W.J., Zide, J.M.O., Gossard, A.C., Taylor, A.J., Averitt, R.D.: Active terahertz metamaterial devices. Nature 444, 597–600 (2006)

    Article  ADS  Google Scholar 

  • Cheng, C., Scherer, A., Tyan, R.C., Fainman, Y., Witzgall, G., Yablonovitch, E.: New fabrication techniques for high quality photonic crystals. J. Vac. Sci. Technol. B 15, 2764 (1997). doi:10.1116/1.589723

    Article  Google Scholar 

  • Gan, Q., Fu, Z., Ding, Y.J., Bartoli, F.J.: Bidirectional subwavelength slit splitter for THz surface plasmons. Opt. Express 15(26), 18050–18055 (2007)

    Article  ADS  Google Scholar 

  • Hu, C., Zhao, Z., Chen, X., Luo, X.: Realizing near-perfect absorption at visible frequencies. Opt. Express 17(13), 11039–11044 (2009)

    Article  ADS  Google Scholar 

  • John, S.: Strong localization of photons in certain disordered dielectric super-lattices. Phys. Rev. Lett. 58(20), 2486–2489 (1987)

    Article  ADS  Google Scholar 

  • Karagodsky, V., Pesala, B., Chase, C., Hofmann, W., Koyama, F., Chang-Hasnain, C.J.: Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. Opt. Express 18(2), 694–699 (2010)

    Article  ADS  Google Scholar 

  • Koyama, F.: Engineering of angular dependence of high-contrast grating mirror for transverse mode control of VCSELs. In: Proceedings of SPIE 8995, High Contrast Metastructures III, 89950H (2014). doi:10.1117/12.2042069

  • Krauss, T.F., De La Rue, R.M.: Photonic crystals in the optical regime: past, present, future. Prog. Quantum Electron. 23(2), 51–96 (1999)

    Article  ADS  Google Scholar 

  • Kumar, M.: Narrow bandwidth and polarization independent design of hollow waveguide in-plane mirror with ultra-wide tuning-range. Appl. Opt. 52(9), 1847–1851 (2014)

    Article  ADS  Google Scholar 

  • Kumar, M., Chase, C., Karagodsky, V., Sakaguchi, T., Koyama, F., Chang, C.J.: Low birefringence and 2-D optical confinement of hollow waveguide with distributed bragg reflector and high-index-contrast grating. IEEE Photon. J. 1, 135 (2009)

    Article  MATH  Google Scholar 

  • Landy, N.I., Bingham, C.M., Tyler, T., Jokerst, N., Smith, D.R., Padilla, W.J.: Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79, 125104 (2009)

    Article  ADS  Google Scholar 

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402-1–207402-4 (2008)

    Article  ADS  Google Scholar 

  • Liu, Y.H., Gu, S., Luo, C.R., Zhao, X.P.: Ultra-thin broadband metamaterial absorber. Appl. Phys. A 108(1), 19–24 (2012)

    Article  ADS  Google Scholar 

  • Luo, H., Cheng, Y.Z., Gong, R.Z.: Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches. Eur. Phys. J. B. 81(4), 387–392 (2011)

    Article  ADS  Google Scholar 

  • Ma, Y., Chen, Q., Grant, J., Saha, S.C., Khalid, A., Cumming, D.R.S.: A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 36(6), 945–947 (2011)

    Article  ADS  MATH  Google Scholar 

  • Mason, J.A., Allen, G., Podolskiy, V.A., Wasserman, D.: Strong coupling of molecular and mid-infrared perfect absorber resonances. IEEE Photon. Technol. Lett. 24(1), 31–33 (2012)

    Article  ADS  Google Scholar 

  • Mateus, C.F.R., Huang, M., Chen, L., Chang-Hasnain, C.J., Suzuki, Y.: Broad-band mirror (1.12–1.62 m) using a subwavelength grating. IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004)

  • Moharam M.G., Gaylord, T.K.: Rigorous coupled wave analysis of planar-grating diffraction. J. Opt. Soc. Am. B 71(7), 811–818 (1981)

  • Oliveira, F., Barat, R., Shulkin, B., Federici, J.F., Gary, D., Zimdars, D.A.: Neural network analysis of terahertz spectra of explosives and bio-agents. Proc. SPIE 5070, 60–70 (2003)

    Article  ADS  Google Scholar 

  • Tao, H., Landy, N.I., Bingham, C.M., Zhang, X., Averitt, R.D., Padilla, W.J.: A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16(10), 7181–7188 (2008)

    Article  ADS  Google Scholar 

  • Tonouch, M.: Cutting-edge terahertz technology. Nat. Phot. 1 97–105 (2007)

  • Wang, B.X., Wang, L.L., Wang, G.Z., Huang, W.Q., Fei Li, X., Zhai, X.: Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photon. Technol. Lett. 26(2), 111–114 (2014)

  • Wang, B.X., Wang, L.-L., Wang, G.-Z., Wang, L., Zhai, X., Li, X.-F., Huang, W.-Q.: A simple nested metamaterial structure with enhanced bandwidth performance. Opt. Commun. 303(13), 13–14 (2013)

    Article  ADS  Google Scholar 

  • Wu, J., Zhou, C., Yu, J., Cao, H., Li, S., Jia, W.: Polarization-independent absorber based on a cascaded metal-dielectric grating structure. IEEE Photon. Technol. Lett. 26(9), 949–952 (2014)

  • Ye, Y., Jin, Y., He, S.: Omni-directional, broadband and polarization insensitive thin absorber in the terahertz regime. J. Opt. Soc. Am. B 27(3), 498–503 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, S., Kumar, M. Broadband and polarization insensitive design of terahertz absorber with high-index contrast grating on SOI chip. Opt Quant Electron 47, 1693–1702 (2015). https://doi.org/10.1007/s11082-014-0026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0026-9

Keywords

Navigation