Skip to main content
Log in

A search-and-track algorithm for controlling the number of guided modes of planar optical waveguides with arbitrary refractive index profiles

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A search-and-track algorithm is proposed for controlling the number of guided modes of planar optical waveguides with arbitrary refractive index profiles. The algorithm starts with an initial guess point in the parameter space that supports a specific number of guided modes. Then, it searches for, and tracks, the boundaries of this space or another space supporting different number of modes. It does so by monitoring the sign of a unified cutoff dispersion function. The algorithm is applied to both symmetric and asymmetric silicon-based parabolic-index waveguides. It shows that unlike asymmetric waveguides, the single-mode condition of symmetric waveguides is controlled by TM-, as opposed to TE-, polarization. This abnormal polarization control is strongest for high index contrast waveguides of sub-micrometer core sizes. The results are verified by full-vectorial beam propagation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams M.J.: An Introduction to Optical Waveguides. Wiley, New York (1981)

    Google Scholar 

  • Anemogiannis E., Glytsis E.N.: Multilayer waveguides: efficient numerical analysis of general structures. J. Lightw. Technol. 10(10), 1344–1351 (1992)

    Article  ADS  Google Scholar 

  • Chan S.P., Png C.E., Lim S.T., Reed G.T., Passaro V.M.N.: Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section. J. Lightw. Technol. 23(6), 2103–2111 (2005)

    Article  ADS  Google Scholar 

  • Chiang K.S.: Coupled-zigzag-wave theory for guided waves in slab waveguide arrays. J. Lightw. Technol. 10(10), 1380–1387 (1992)

    Article  ADS  Google Scholar 

  • Chung M.-S., Kim C.-M.: General eigenvalue equations for optical planar waveguides with arbitrarily graded-index profiles. J. Lightw. Technol. 18(6), 878–885 (2000)

    Article  ADS  Google Scholar 

  • Delage A., Janz S., Lamontagne B., Bogdanov A., Dalacu D., Xu D.-X., Yap K.P.: Monolithically integrated asymmetric graded and step-index couplers for microphotonic waveguides. Opt. Express 14(1), 148–161 (2006)

    Article  ADS  Google Scholar 

  • Ding H., Chan K.T.: Solving planar dielectric waveguide equations by counting the number of guided modes. IEEE Photon. Technol. Lett. 9(2), 215–217 (1997)

    Article  ADS  Google Scholar 

  • Donnelly J.P., Lau S.D.: Generalized effective index series solution analysis of waveguide structures with positionally varying refractive index profiles. IEEE J. Quantum Electron. 32(6), 1070–1079 (1996)

    Article  ADS  Google Scholar 

  • Ghatak A.K., Thyagarajan K., Shenoy M.R.: Numerical analysis of planar optical waveguides using matrix approach. J. Lightw. Technol. LT-5(5), 660–667 (1987)

    Article  ADS  Google Scholar 

  • Hadley G.R., Smith R.E.: Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions. J. Lightw. Technol. 13(3), 465–469 (1995)

    Article  ADS  Google Scholar 

  • Mashanovich G.Z., Milosevic M., Matavulj P., Stankovic S., Timotijevic B., Yang P.Y., Teo E.J., Breese M.B.H., Bettiol A.A., Reed G.T.: Silicon photonic waveguides for different wavelength regions. Semicond. Sci. Technol. 23(6), 064002, 9pp (2008)

    Article  Google Scholar 

  • Mehrany K., Rashidian B.: Polynomial expansion for extraction of electromagnetic eigenmodes in layered structures. J. Opt. Soc. Am. B. 20(12), 2434–2441 (2003)

    Article  ADS  Google Scholar 

  • Milosevic M.M., Matavulj P.S., Timotijevic B.D., Reed G.T., Mashanovich G.Z.: Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering. J. Lightw. Technol. 26(13), 1840–1846 (2008)

    Article  ADS  Google Scholar 

  • Ramadan T.A.: A recurrence technique for computing the effective indexes of the guided modes of coupled single-mode waveguides. Prog. Electromagn. Res. M 4, 33–46 (2008)

    Article  Google Scholar 

  • Ramaswamy V., Lagu R.K.: Numerical field solution for an arbitrary asymmetrical graded-index planar waveguide. J. Lightw. Technol. LT-1(2), 408–417 (1983)

    Article  ADS  Google Scholar 

  • Ruschin S., Griffel G., Hardy A., Croitoru N.: Unified approach for calculating the number of confined modes in multilayered waveguiding structures. J. Opt. Soc. Am. A 3(1), 116–123 (1986)

    Article  ADS  Google Scholar 

  • Scarmozzino R., Gopinath A., Pregla R., Helfert S.: Numerical techniques for modeling guided-wave photonic devices. IEEE J. Sel. Topics Quantum Electron. 6(1), 150–162 (2000)

    Article  Google Scholar 

  • Shiraishi K., Tsai C.S.: A micro light-beam spot-size converter using a hemicylindrical GRIN-slab tip with high-index contrast. J. Lightw. Technol. 23(11), 3821–3826 (2005)

    Article  ADS  Google Scholar 

  • Wang L., Huang N.: A new numerical method for solving planar waveguide problems with arbitrary index profiles: TE mode solutions. IEEE J. Quantum Electron. 35(9), 1351–1353 (1999)

    Article  ADS  Google Scholar 

  • Zariean N., Sarrafi P., Mehrany K., Rashidian B.: Differential-transfer-matrix based on Airy’s functions in analysis of planar optical structures with arbitrary index profiles. IEEE J. Quantum Electron. 44(4), 324–330 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek A. Ramadan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramadan, T.A. A search-and-track algorithm for controlling the number of guided modes of planar optical waveguides with arbitrary refractive index profiles. Opt Quant Electron 43, 175–189 (2012). https://doi.org/10.1007/s11082-011-9521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-011-9521-4

Keywords

Navigation