Skip to main content
Log in

Enhancement of the SHG efficiency in a doubly resonant 2D-photonic crystal microcavity

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper we discuss the conditions to obtain the enhancement of second harmonic generation in a two-dimensional circular photonic crystal AlGaAs cavity. The photonic crystal circular cavity offers the possibility of having high-Q resonance modes with respect to those obtained with other types of photonic crystal lattices. The crystallographic cut of the AlGaAs provides a strong nonlinear coupling between a transverse-magnetic (TM) polarized resonant mode at the fundamental wavelength and a transverse-electric (TE) polarized resonant mode at second harmonic wavelength. The double resonance condition leads to a strong improvement of the second harmonic generation process. A preliminary linear analysis has been performed by using the finite-difference time-domain method, which includes the dispersive response of the material, modeled using the well-known one-pole pair Lorentzian function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benisty H., Weisbuch C., Labilloy D., Rattier M., Smith C.J.M., Krauss T.F., De La Rue R.M., Houdré R., Oesterle U., Jouanin C. and Cassagne D. (1999). Optical and confinement properties of two-dimensional photonic crystals. IEEE J. Lightwave Technol. 17(11): 2063–2077

    Article  ADS  Google Scholar 

  • Bourgeade A. and Freysz E. (2000). Computational modeling of second-harmonic generation by solution of full-wave vector Maxwell equations. J. Opt. Soc. Am. B 17(2): 226–234

    ADS  Google Scholar 

  • Boyd R.W. (2003). Nonlinear Optics. Academic Press, San Diego, CA

    Google Scholar 

  • Centini M., Sibilia C., Scalora M., D’Aguanno G., Bertolotti M., Bloemer M.J., Bowden C.M. and Nefedov I. (1999). Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions. Phys. Rev. E 60(4): 4891–4898

    Article  ADS  Google Scholar 

  • Cowan A.R. and Young J.F. (2002). Mode matching for second-harmonic generation in photonic crystal waveguides. Phys. Rev. B 65(8): 085106

    Article  ADS  Google Scholar 

  • Dolgova T.V., Maidykovski A.I., Martemyanov M.G., Fedyanin A.A., Aktsipetrov O.A., Marowsky G., Yakovlev V.A. and Mattei G. (2002). Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals. Appl. Phys. Lett. 81(15): 2725–2727

    Article  ADS  Google Scholar 

  • D’Orazio, A., de Ceglia, D., De Sario, M., Petruzzelli, V., Prudenzano, F.: Second order nonlinear interactions in periodic waveguides. ICTON 2004, IEEE Conference Proceedings, 126-130 (2004)

  • D’Orazio A., de Ceglia D., De Sario M., Petruzzelli V. and Prudenzano F. (2005). FDTD analysis of second harmonic generation in a quasi-one dimensional photonic band gap waveguide. Recent Res. Devel. Optics 5: 103–116

    Google Scholar 

  • Dumeige Y., Raineri F., Levenson J.A. and Letartre X. (2003). Second-harmonic generation in one-dimensional photonic edge waveguides. Phys. Rev. E 68: 66617

    Article  ADS  Google Scholar 

  • Horiuchi N., Segawa Y., Nozokido T., Mizumo K. and Miyazaki H. (2004). Isotropic photonic band gap in a circular photonic crystal. Optics Letters 29(10): 1084–1086

    Article  ADS  Google Scholar 

  • Joannopoulos J.D., Meade R.D. and Winn J.N. (1995). Photonic Crystals: Molding the Flow of Light. Princeton Univ. Press, Princeton, NJ

    MATH  Google Scholar 

  • John S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58(23): 2486–2489

    Article  ADS  Google Scholar 

  • Johnson S.G. and Joannopoulos J.D. (2002). Photonic Crystals—The Road from Theory to Practice. Kluwer, Boston, MA

    Google Scholar 

  • Liscidini, M., Andreani, L.C.: Second harmonic generation in doubly resonant planar microcavities. Icton 2004, IEEE Conference Proceedings, 346–349 (2004)

  • Liscidini M. and Andreani L.C. (2006). Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors. Phys. Rev. E 73: 016613

    Article  ADS  Google Scholar 

  • Martorell J. and Corbalán R. (1994). Enhancement of second-harmonic generation in a periodic structure with a defect. Opt. Commun. 108: 319–323

    Article  ADS  Google Scholar 

  • Mingaleev S.F. and Kivshar Y.S. (2001). Self-trapping and stable localized modes in nonlinear photonic crystals. Phys. Rev. Lett. 86(24): 5474–5477

    Article  ADS  Google Scholar 

  • Mondia J.P., Jiang W., Cowan A.R., Young J.F. and Driel H.M. (2003). Enhanced second-harmonic generation from planar photonic crystals. Opt. Lett. 28(24): 2500–2502

    ADS  Google Scholar 

  • Raineri F., Dumeige Y., Letartre X. and Levenson J.A. (2002). Nonlinear decoupled FDTD code: phase-matching in 2D defective crystal. Electron. Lett. 38(25): 1704–1706

    Article  Google Scholar 

  • Reinke C.M., Jafarpour A., Momeni B., Soltani M., Khorasani S., Adibi A., Xu Y. and Lee R.K. (2006). Nonlinear finite-difference time-domain method for the simulation of anisotropic, \chi(2), and \chi(3) optical effects. J. Lightwave Technol. 24(1): 624–634

    Article  ADS  Google Scholar 

  • Ren F.F., Li R., Cheng C., Wang H.T., Qiu J.R., Si J.H. and Hirao K. (2004). Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes. Phys. Rev. B 70: 245109

    Article  ADS  Google Scholar 

  • Sakoda K. (2001). Optical Properties of Photonic Crystals. Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Scalora M., Bloemer M.J., Manka A.S., Dowling J.P., Bowden C.M., Viswanathan R. and Haus J.W. (1997). Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures. Phys. Rev. A 56(4): 3166–3174

    Article  ADS  Google Scholar 

  • Shi B., Jiang Z.M., Zhou X.F. and Wang X. (2002). A two-dimensional nonlinear photonic crystal for strong second harmonic generation. J. Appl. Phys. 91(10): 6769–6771

    Article  ADS  Google Scholar 

  • Shi B., Jiang Z.M. and Wang X. (2001). Defective photonic crystals with greatly enhanced second-harmonic generation. Opt. Lett. 26(15): 1194–1196

    ADS  Google Scholar 

  • Taflove A. (2000). Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Norwood MA

    MATH  Google Scholar 

  • Trull J., Vilaseca R., Martorell J. and Corbalán R. (1995). Second-harmonic generation in local modes of a truncated periodic structure. Opt. Lett. 20(17): 1746–1748

    Article  ADS  Google Scholar 

  • Xiao S. and Qiu M. (2005). High-Q microcavities realized in a circular photonic crystal slab. Photonics and Nanostructures, Fundamentals and Applications 3: 134–138

    Article  ADS  Google Scholar 

  • Yablonovitch E. (1987). Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20): 2059–2062

    Article  ADS  Google Scholar 

  • Yariv A. and Yeh P. (1984). Optical Waves in Crystals—Propagation and Control of Laser Radiation. Wiley-Interscience, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D’Orazio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonucci, D., de Ceglia, D., D’Orazio, A. et al. Enhancement of the SHG efficiency in a doubly resonant 2D-photonic crystal microcavity. Opt Quant Electron 39, 353–360 (2007). https://doi.org/10.1007/s11082-007-9086-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9086-4

Keywords

Navigation