Skip to main content
Log in

Advanced impedance matching in photonic crystal waveguides

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We demonstrate that the dispersion of guided propagating modes in certain Photonic Crystal Waveguides (PCWGs) can be kept constant when the waveguide’s structure changes along the propagation direction. This suggests that the principle of constant group velocity matching may be utilized to improve impedance matching between different types of PCWGs while at the same time providing significant design flexibility. We illustrate this principle through the design of several efficient coupling structures between two different PCWGs via a local density of states and Fourier transform analysis of the associate electromagnetic fields. The couplers consist of heterostructures whose individual sections exhibit rather distinct structural parameters. Furthermore, we compare these structures to an adiabatic coupler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akahane Y., Asano T., Song B.S., Noda S. (2003) High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947

    Article  ADS  Google Scholar 

  • Asatryan A.A., Busch K., McPhedran R.C., Botten L.C., de Sterke C.M., Nicorovici N.A. (2003) Twodimensional green tensor and local density of states infinite-sized two-dimensional photonic crystals. Waves in Random Media 13, 9–25

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Bache M., Nielsen H., Lægsgaard J., Bang O. (2006) Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch. Opt. Lett. 31, 1612–1614

    Article  ADS  Google Scholar 

  • Biswas R., Li Z.Y., Ho K.M. (2004) Impedance of photonic crystals and photonic crystal waveguides. Appl. Phys. Lett. 84, 1254–1256

    Article  ADS  Google Scholar 

  • Boscolo S., Conti C., Midrio M., Someda C.G. (2002) Numerical analysis of propagation and impedancematching in 2-D photonic crystal waveguides with finite length. J. Lightwave Tech. 20, 304–310

    Article  ADS  Google Scholar 

  • Boscolo S., Midrio M., Krauss T.F. (2002) Y junctions in photonic crystal channel waveguides: high transmission and impedance matching. Opt. Lett. 27, 1001–1003

    ADS  Google Scholar 

  • Chan Y.S., Chan C.T., Liu Z.Y. (1988) Photonic band gaps in two dimensional photonic quasicrystals. Phys. Rev. Lett. 80, 956–959

    Article  ADS  Google Scholar 

  • Chaloupka J., Zarbakhsh J., Hingerl K. (2005) Local density of states and modes of circular photonic crystal cavities. Phys. Rev. B 72, 085122

    Article  ADS  Google Scholar 

  • Horiuchi N., Segawa Y., Nozokido T., Mizuno K., Miyazaki H. (2004) Isotropic photonic gaps in a circular photonic crystal. Opt. Lett. 29, 1084–1086

    Article  ADS  Google Scholar 

  • Imeshev G., Arbore M.A., Fejer M.M., Galvanauskas A., Fermann M., Harter D. (2000) Ultrashort-pulse secondharmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping. J. Opt. Soc. Am. B 17, 304–318

    ADS  Google Scholar 

  • Jafarpour A., Reinke C.M., Adibi A.,Yong X., Lee R.K. (2004) Anewmethod for the calculation of the dispersion of nonperiodic photonic crystal waveguides. IEEE J. Quant. Electron. 40(8): 1060–1067

    Article  ADS  Google Scholar 

  • Janssen T. (1988) Aperiodic crystals: a contradictio in terminis?. Phys. Rep. 168, 55–113

    Article  ADS  MathSciNet  Google Scholar 

  • Jin C., Cheng B., Man B., Li Z., Zhang D., Ban S., Sun B. (1999) Band gap and wave guiding effect in a quasiperiodic photonic crystal. Appl. Phys. Lett. 75, 1848–1850

    Article  ADS  Google Scholar 

  • Johnson S.G., Bienstman P., Skorobogatiy M.A., Ibanescu M., Lidorikis E., Joannopoulos J.D. (2002) Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. Phys. Rev. E 66, 066608

    Article  ADS  Google Scholar 

  • Kaliteevski M.A., Brand S., Abram R.A., Krauss T.F., Millar P., de La Rue R.M. (2001) Diffraction and transmission of light in low-refractive index penrose-tiled photonic quasicrystals. J. Phys. Condens. Matter 13, 10459–10470

    Article  ADS  Google Scholar 

  • McNab S.J., Moll N., Vlasov Y.A. (2003) Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 11, 2927–2939

    Article  ADS  Google Scholar 

  • Michaelis D., Wächter C., Burger S., Zschiedrich L., Bräuer A. (2006) Micro-optically assisted high-index waveguide coupling. App. Opt. 45, 1831–1838

    Article  ADS  Google Scholar 

  • Notomi M., Shinya A., Mitsugi S., Kuramochi E., Ryu H.-Y. (2004) Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561

    Article  ADS  Google Scholar 

  • Olivier S., Weisbuch C., Benisty H. (2003) Compact and fault-tolerant photonic crystal add drop filter. Opt. Lett. 28(22): 2246–2248

    ADS  Google Scholar 

  • Petrov A.Yu., Eich M. (2004) Zero dispersion at small group velocities in photonic crystal waveguides. Appl. Phys. Lett. 85(21): 4866–4868

    Article  ADS  Google Scholar 

  • Sanchis P., Bienstman P., Luyssaert B., Baets R., Marti J. (2004) Analysis of butt coupling in photonic Crystals. IEEE J. Quant. Electron. 40, 541–550

    Article  ADS  Google Scholar 

  • Skorobogatiy M., Jacobs S.A., Johnson S.G., Fink Y. (2002) Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates. Opt. Express 10(21): 1227–1243

    ADS  Google Scholar 

  • Wang Y., Cheng B., Zhang D. (2003) The density of states in quasiperiodic photonic crystals. J. Phys. Condens. Matter 15, 7675–7680

    Article  ADS  Google Scholar 

  • Zarbakhsh J., Hagmann F.,Mingaleev S.F., Busch K., Hingerl K. (2004) Arbitrary anglewaveguiding applications of two-dimensional curvilinear-lattice photonic crystals. Appl. Phys. Lett. 84, 4687–4689

    Article  ADS  Google Scholar 

  • Zarbakhsh J., Isfahani F.G., Chaloupka J., Rinnerbauer V., Hingerl K. (2005) Geometric freedom for constructing variable size photonic bandgap structures. Proceeding of 31st European Conference on Optical Communication (ECOC) 3: 509–510

    Google Scholar 

  • Zarbakhsh, J., Mohtashami, A., Hingerl, K.: Geometrical freedom for constructing variable size photonic bandgap structures. Submitted to Opt. Quant. Electron. (2007) doi:10.1007/s11082-007-9081-9

  • Zoorob M.E., Charlton M.D.B., Parker G.J., Baumberg J.J., Netti M.C. (2000) Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature (London) 404, 740–743

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Zarbakhsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohtashami, A., Zarbakhsh, J. & Hingerl, K. Advanced impedance matching in photonic crystal waveguides. Opt Quant Electron 39, 387–394 (2007). https://doi.org/10.1007/s11082-007-9080-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9080-x

Keywords

Navigation