Skip to main content
Log in

Parallel 3D topology optimization with multiple constraints and objectives

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

This paper introduces a parallel Topology Optimization (TO) platform capable of optimizing designs for multiple objectives, whilst subject to multiple constraints, in the open source Fierro Finite Element code. The TO methodology uses a continuous material interpolation scheme, which avoids checkerboard designs without additional filters and constraints as seen with piece-wise constant material interpolation schemes. Additionally, analytic Hessian-vector products are used, with the relevant adjoint calculation shown. The code utilizes OpenMPI to make parallel the major computational segments of TO: global equation assembly, global equation solution, and the non-linear optimization of the design. The algorithm leverages several software packages: ELEMENTS (grants FE basis functions), MATAR (grants efficient multidimensional dense and sparse matrix storage), Zoltan2 (Mesh Decomposition Algorithm), MueLu (parallel multi-grid solver for the global equilibrium equations), and ROL (non-linear optimization). It is found that the Fierro TO platform optimizes problems with mechanical and thermal objectives subject to multiple constraints: mass, several moment of inertia targets, and constraints related to load bearing regions. Additionally, the performance of several ROL algorithms using analytic Hessian-vector products is compared with the Method of Moving Asymptotes, approximate Hessian, for topology optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aage N, Lazarov BS (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47(4):493–505

    Article  MathSciNet  MATH  Google Scholar 

  • Baraldi RJ, Kouri DP (2022) A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations. Mathematical Programming, 1–40

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Berger-Vergiat L, Glusa CA, Hu JJ, Mayr M, Prokopenko A, Siefert CM, Tuminaro RS, Wiesner TA (2019) MueLu user’s guide. Technical Report SAND2019-0537, Sandia National Laboratories

  • Bhatia M, Beran PS (2018) Mast: an open-source computational framework for design of multiphysics systems. In: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p 1650

  • Boman EG, Çatalyürek ÜV, Chevalier C, Devine KD (2012) The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing: partitioning, ordering and coloring. Sci Program 20(2):129–150

    Google Scholar 

  • Borrvall T, Petersson J (2001) Large-scale topology optimization in 3d using parallel computing. Comput Methods Appl Mech Eng 190(46–47):6201–6229

    Article  MATH  Google Scholar 

  • Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190(37–38):4911–4928

    Article  MathSciNet  MATH  Google Scholar 

  • Choi KK, Kim N-H (2004) Structural sensitivity analysis and optimization 1: linear systems. Springer, Berlin

    Google Scholar 

  • Dbouk T (2017) A review about the engineering design of optimal heat transfer systems using topology optimization. Appl Therm Eng 112:841–854

    Article  Google Scholar 

  • Diaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45

    Article  Google Scholar 

  • Dunning DJ, Morgan NR, Moore JL, Nelluvelil E, Tafolla TV, Robey RW (2021) Matar: a performance portability and productivity implementation of data-oriented design with Kokkos. J Parallel Distrib Comput 157:86–104

    Article  Google Scholar 

  • Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8(1):42–51

    Article  Google Scholar 

  • Evgrafov A (2014) On the reduced hessian of the compliance. Struct Multidiscip Optim 50(6):1197–1199

    Article  MathSciNet  Google Scholar 

  • Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, Sahay V, Kambadur P, Barrett B, Lumsdaine A, et al. (2004) Open mpi: Goals, concept, and design of a next generation mpi implementation. In: European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, Springer, pp 97–104

  • Gao T, Zhang W, Zhu J, Xu Y, Bassir DH (2008) Topology optimization of heat conduction problem involving design-dependent heat load effect. Finite Elem Anal Des 44(14):805–813

    Article  Google Scholar 

  • Graham RL, Woodall TS, Squyres JM (2005) Open mpi: A flexible high performance MPI. In: International Conference on Parallel Processing and Applied Mathematics, Springer, pp 228–239

  • Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Heinkenschloss M (2008) Numerical solution of implicitly constrained optimization problems. Technical report

  • Iga A, Nishiwaki S, Izui K, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Heat Mass Transf 52(11–12):2721–2732

    Article  MATH  Google Scholar 

  • Kang Z, Wang X, Wang R (2009) Topology optimization of space vehicle structures considering attitude control effort. Finite Elem Anal Des 45(6–7):431–438

    Article  Google Scholar 

  • Kouri D (2021) A matrix-free trust-region newton algorithm for convex-constrained optimization. Optim Lett, 1–15

  • Kumar AV, Parthasarathy A (2011) Topology optimization using b-spline finite elements. Struct Multidiscip Optim 44:471–481

    Article  MathSciNet  MATH  Google Scholar 

  • Lambe AB, Czekanski A (2018) Topology optimization using a continuous density field and adaptive mesh refinement. Int J Numer Meth Eng 113(3):357–373

    Article  MathSciNet  Google Scholar 

  • Lambe AB, Czekanski A (2018) A density field parametrization for topology optimization using bernstein elements. Int J Numer Meth Eng 115(10):1266–1286

    Article  MathSciNet  Google Scholar 

  • Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Meth Eng 59(14):1925–1944

    Article  MathSciNet  MATH  Google Scholar 

  • Mattheck C, Burkhardt S (1990) A new method of structural shape optimization based on biological growth. Int J Fatigue 12(3):185–190

    Article  Google Scholar 

  • Moore JL, Morgan NR, Horstemeyer MF (2019) Elements: A high-order finite element library in c++. SoftwareX 10:100257

    Article  Google Scholar 

  • Morgan N, Chiravalle V, Moore J (2021) Fierro vx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States)

  • Mukherjee S, Lu D, Raghavan B, Breitkopf P, Dutta S, Xiao M, Zhang W (2021) Accelerating large-scale topology optimization: state-of-the-art and challenges. Archiv Comput Methods Eng 28(7):4549–4571

    Article  MathSciNet  Google Scholar 

  • Nomura T, Nishiwaki S, Sato K, Hirayama K (2009) Topology optimization for the design of periodic microstructures composed of electromagnetic materials. Finite Elem Anal Des 45(3):210–226

    Article  MathSciNet  Google Scholar 

  • Park J, Sutradhar A (2015) A multi-resolution method for 3d multi-material topology optimization. Comput Methods Appl Mech Eng 285:571–586

    Article  MathSciNet  MATH  Google Scholar 

  • Paulino GH, Le CH (2009) A modified q4/q4 element for topology optimization. Struct Multidiscip Optim 37(3):255–264

    Article  Google Scholar 

  • Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Meth Eng 41(8):1417–1434

    Article  MathSciNet  MATH  Google Scholar 

  • Rahmatalla S, Swan C (2004) A q4/q4 continuum structural topology optimization implementation. Struct Multidiscip Optim 27(1–2):130–135

    Article  Google Scholar 

  • Ridzal D, Kouri DP, von Winckel GJ (2017) Rapid optimization library. Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States)

  • Rozvany GI (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237

    Article  MathSciNet  MATH  Google Scholar 

  • Salazar de Troya MA, Tortorelli DA (2018) Adaptive mesh refinement in stress-constrained topology optimization. Struct Multidiscip Optim 58(6):2369–2386

    Article  MathSciNet  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. J Struct Mech 25(4):493–524

    Google Scholar 

  • Sigmund O, Maute K (2012) Sensitivity filtering from a continuum mechanics perspective. Struct Multidiscip Optim 46(4):471–475

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural optimization 16(1):68–75

    Article  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Meth Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Trilinos Project Team T (xxxx) The Trilinos Project Website

  • Trott CR, Lebrun-Grandié D, Arndt D, Ciesko J, Dang V, Ellingwood N, Gayatri R, Harvey E, Hollman DS, Ibanez D et al (2021) Kokkos 3: Programming model extensions for the exascale era. IEEE Trans Parallel Distrib Syst 33(4):805–817

    Article  Google Scholar 

  • van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    Article  MathSciNet  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41(4):495–505

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Gain AL, Norato JA (2020) Adaptive mesh refinement for topology optimization with discrete geometric components. Comput Methods Appl Mech Eng 364:112930

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou S, Li W, Li Q (2010) Level-set based topology optimization for electromagnetic dipole antenna design. J Comput Phys 229(19):6915–6930

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou P, Ou G, Du J (2019) Topology optimization of continua considering mass and inertia characteristics. Struct Multidiscip Optim 60(2):429–442

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The Los Alamos unlimited release number is LA-UR-22-32677. Los Alamos National Laboratory is operated by Triad National Security, LLC for the U.S. Department of Energy NNSA under Contract No. 89233218CNA000001. This work acknowledges Austin Sutton for providing the initial rabbit mesh used in Sect. 4.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Diaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

All results presented in this work may be reproduced with the stated parameters using the Fierro codebase available at: https://github.com/lanl/Fierro. The rabbit mesh used in the work may be found in the following repo: https://github.com/Adrian-Diaz/My_Meshes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Verification

Appendix A: Verification

In order to verify the FEM solvers, several simple problems such as beam bending, tension/compression, and steady state heat flux were successfully matched to analytical results for beam geometries. Additionally, the optimization results were compared for the rabbit example seen in Sect. 4, subject to the same loading conditions, to the same optimization problem run using the Ansys Mechanical software. As seen in Fig. 9, the geometries are very similar; naturally results differ by a margin due to different optimization algorithms and material interpolation strategies.

Fig. 9
figure 9

Comparison of results from Fierro and Ansys software for compliance minimization under mass and yy moment of inertia constraints. Final objectives for the Fierro and Ansys results are 7.18 J and 7.17 J respectively. Relative errors in the mass constraint are 4.9% and 10% for Fierro and Ansys respectively. Relative errors in the Moment of Inertia constraint are 0.6% and 2.5% for Fierro and Ansys respectively. As demonstrated here, Fierro delivers a topology similar to the one from Ansys but the topology matches all design goals more accurately compared to the Ansys result

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, A., Morgan, N. & Bernardin, J. Parallel 3D topology optimization with multiple constraints and objectives. Optim Eng (2023). https://doi.org/10.1007/s11081-023-09852-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11081-023-09852-6

Keywords

Navigation