Skip to main content
Log in

Controlling the Kelvin force: basic strategies and applications to magnetic drug targeting

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Motivated by problems arising in magnetic drug targeting, we propose to generate an almost constant Kelvin (magnetic) force in a target subdomain, moving along a prescribed trajectory. This is carried out by solving a minimization problem with a tracking type cost functional. The magnetic sources are assumed to be dipoles and the control variables are the magnetic field intensity, the source location and the magnetic field direction. The resulting magnetic field is shown to effectively steer the drug concentration, governed by a drift-diffusion PDE, from an initial to a desired location with limited spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antil H, Hintermüller M, Nochetto R, Surowiec T, Wegner D (2017) Finite horizon model predictive control of electrowetting on dielectric with pinning. Interfaces Free Bound 19(1):1–30

    Article  MathSciNet  MATH  Google Scholar 

  • Antil H, Nochetto RH, Venegas P (2018) Optimal control of kelvin force in a bounded domain. Math Models Methods Appl Sci 28:95–130

    Article  MathSciNet  MATH  Google Scholar 

  • Bayramov NR, Kraus JK (2015) On the stable solution of transient convectiondiffusion equations. J Comput Appl Math 280:275–293

    Article  MathSciNet  MATH  Google Scholar 

  • Braides A (2014) Local minimization, variational evolution and \(\varGamma\)-convergence, vol 2094. Lecture notes in mathematics. Springer, Cham

    Book  MATH  Google Scholar 

  • Brezis H (2011) Functional analysis, Sobolev spaces and partial differential equations. Springer, Berlin

    MATH  Google Scholar 

  • Brezzi F, Marini LD, Pietra P (1989) Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J Numer Anal 26(6):1342–1355

    Article  MathSciNet  MATH  Google Scholar 

  • Choi H, Hinze M, Kunisch K (1999) Instantaneous control of backward-facing step flows. Appl Numer Math 31(2):133–158

    Article  MathSciNet  MATH  Google Scholar 

  • Choi H, Temam R, Moin P, Kim J (1993) Feedback control for unsteady flow and its application to the stochastic Burgers equation. J Fluid Mech 253:509–543

    Article  MathSciNet  MATH  Google Scholar 

  • Dal Maso G (1993) An introduction to \(\varGamma\)-convergence, vol 8. Progress in nonlinear differential equations and their applications. Birkhäuser Boston Inc, Boston

    Book  Google Scholar 

  • Dobson J (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13:283–287

    Article  Google Scholar 

  • Ern A, Guermond J-L (2004) Theory and practice of finite elements, vol 159. Applied mathematical sciences. Springer, New York

    MATH  Google Scholar 

  • Fountain TWR, Kailat PV, Abbott JJ (2010) Wireless control of magnetic helical microrobots using a rotating-permanent-magnet manipulator. In: 2010 IEEE international conference on robotics and automation (ICRA), pp 576–581

  • Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563

    Article  Google Scholar 

  • Grief AD, Richardson G (2005) Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater 293:455–463

    Article  Google Scholar 

  • Guermond J-L, Pasquetti R (2013) A correction technique for the dispersive effects of mass lumping for transport problems. Comput Methods Appl Mech Eng 253:186–198

    Article  MathSciNet  MATH  Google Scholar 

  • Hintermüller M, Ito K, Kunisch K (2002) The primal-dual active set strategy as a semismooth newton method. SIAM J Optim 13(3):865–888

    Article  MathSciNet  MATH  Google Scholar 

  • Hinze M, Kauffmann A (1999) On a distributed control law with an application to the control of unsteady flow around a cylinder. In: Hoffmann KH, Leugering G, Tröltzsch F, Caesar S (eds) optimal control of partial differential equations. ISNM international series of numerical mathematics, vol 133. Birkhäuser, Basel, pp 177–190

    Chapter  Google Scholar 

  • Hosu BG, Jakab K, Bánki P, Tóth FI, Forgacs G (2003) Magnetic tweezers for intracellular applications. Rev Sci Instrum 74(9):4158–4163

    Article  Google Scholar 

  • Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Applied mathematical sciences. Springer, New York

    MATH  Google Scholar 

  • Kelley CT (1999) Iterative methods for optimization. Number 18 in frontiers in applied mathematics. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Komaee A, Shapiro B (2011) Magnetic steering of a distributed ferrofluid spot towards a deep target with minimal spreading. In: 2011 50th IEEE conference on decision and control and European control conference (CDC-ECC), pp 7950–7955

  • Lim JK, Yeap SP, Low SC (2014) Challenges associated to magnetic separation of nanomaterials at low field gradient. Sep Purif Technol 123:171–174

    Article  Google Scholar 

  • Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dörken B, Herrmann F, Gürtler R (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4’-Epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56(20):4686–4693

    Google Scholar 

  • Mahoney AW, Abbott JJ (2011) Managing magnetic force applied to a magnetic device by a rotating dipole field. Appl Phys Lett 99:134103

    Article  Google Scholar 

  • Markowich PA, Zlámal MA (1988) Inverse-average-type finite element discretizations of selfadjoint second-order elliptic problems. Math Comput 51(184):431–449

    Article  MathSciNet  MATH  Google Scholar 

  • Nacev A, Beni C, Bruno O, Shapiro B (2011) The behaviors of ferro-magnetic nano-particles in and around blood vessels under applied magnetic fields. J Magn Magn Mater 323(6):651–668

    Article  Google Scholar 

  • Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85

    Article  Google Scholar 

  • Petruska AJ, Abbott JJ (2013) Optimal permanent-magnet geometries for dipole field approximation. IEEE Trans Magn 49:811–819

    Article  Google Scholar 

  • Rosensweig RE (1997) Ferrohydrodynamics. Dover Publications, Mineola

    Google Scholar 

  • Shapiro A, Dentcheva D, Ruszczyński A (2014) Lectures on stochastic programming: modeling and theory, volume 9 of MOS-SIAM series on optimization. Society for industrial and applied mathematics (SIAM). Mathematical Optimization Society, Philadelphia

    MATH  Google Scholar 

  • Solanki A, Kim JD, Lee K-B (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3(4):567–578

    Article  Google Scholar 

  • Tröltzsch F (2010) Optimal control of partial differential equations: theory, methods and applications, vol 112. Graduate Studies in Mathematics

  • Xu J, Zikatanov L (1999) A monotone finite element scheme for convection–diffusion equations. Math Comput 68(228):1429–1446

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harbir Antil.

Additional information

The work of H. Antil has been partially supported by NSF Grants DMS-1109325 and DMS-1521590. R. H. Nochetto has been partially supported by NSF Grants DMS-1109325 and DMS-1411808 and P. Venegas has been supported by NSF Grant DMS-1411808 and FONDECYT Project 11160186.

Appendix

Appendix

The stopping criteria considered in Sect. 5 depends on the discrete \(L^2\)-norm of the projected gradient. However, it makes sense to consider the discrete \(H^1\)-norm instead, since the topology is \(H^1\) for the variable \({\varvec{\alpha }}\). With this in mind, we notice that \({\mathcal {J}}'({\varvec{v}}) : V\times V \rightarrow {\mathbb {R}}\), in Theorem 3 with \(V = \{{\varvec{v}} \in [{\mathrm {H}}^1(0,T)]^{n_p} \ : \ {\varvec{v}}(0) = {\varvec{0}} \}\), is linear and continuous. Thus, the Riesz representation theorem implies that, for all \((\bar{{\varvec{\alpha }}},\bar{{\varvec{\theta }}}) \in {\mathcal {H}}_{ad}\times {\mathcal {V}}_{ad}\) there exists an element \(\nabla {\mathcal {J}}(\bar{{\varvec{\alpha }}},\bar{{\varvec{\theta }}}) \in V\times V\) (call it a gradient) such that

$$\begin{aligned} {\mathcal {J}}'(\bar{{\varvec{\alpha }}},\bar{{\varvec{\theta }}})\left\langle ({\varvec{\alpha }},{\varvec{\theta }}) \right\rangle = \left( \nabla {\mathcal {J}}(\bar{{\varvec{\alpha }}},\bar{{\varvec{\theta }}}),({\varvec{\alpha }},{\varvec{\theta }})\right) _V, \quad \forall ({\varvec{\alpha }},{\varvec{\theta }}) \in V. \end{aligned}$$

To get an expression for \(\nabla {\mathcal {J}}\) in the discrete space, given \(({\varvec{\alpha }}_\tau ,{\varvec{\theta }}_\tau ) \in {\mathcal {H}}^\tau _{ad}\times {\mathcal {V}}^\tau _{ad}\), we solve for \(({\varvec{u}}_\tau ,{\varvec{w}}_\tau ) \in V_\tau \times V_\tau \subset [{\mathrm {H}}^1(0,T)]^{2n_p}\), \(V_\tau :={\mathbb {P}}^1_\tau \cap V\), satisfying

$$\begin{aligned}&\int _0^T \partial _t {\varvec{u}}_\tau \, \partial _t {\varvec{v}}^\tau _1 \; dt+ \int _0^T \partial _t {\varvec{w}}_\tau \, \partial _t {\varvec{v}}^\tau _2 \; dt = {\mathcal {J}}'({\varvec{\alpha }}_\tau ,{\varvec{\theta }}_\tau )\langle ({\varvec{v}}^\tau _1,{\varvec{v}}^\tau _2)\rangle \quad \forall ({\varvec{v}}^\tau _1,{\varvec{v}}^\tau _2) \in V_\tau \times V_\tau , \end{aligned}$$

and set \(\nabla {\mathcal {J}}({\varvec{\alpha }}_\tau ,{\varvec{\theta }}_\tau ) = ({\varvec{u}}_\tau ,{\varvec{w}}_\tau )\). By taking into account the previous representative of the gradient, we use projected BFGS to solve the optimization problem with a stopping criterion given by

$$\begin{aligned} \Vert ({\varvec{\alpha }}_\tau ,{\varvec{\theta }}_\tau )-{\mathbb {P}}^\tau _{[{\varvec{\alpha }}_*,{\varvec{\alpha }}^*,{\varvec{\theta }}_*,{\varvec{\theta }}^*]}(({\varvec{\alpha }}_\tau ,{\varvec{\theta }}_\tau )-\nabla {\mathcal {J}}({\varvec{\alpha }}_\tau ,{\varvec{\theta }}_\tau ))\Vert _{V\times V} < {\mathtt {Tol}}. \end{aligned}$$
(6.10)

Here, \({{{\mathbb {P}}}^{\tau }}_{[{\varvec{\alpha }}_*,{\varvec{\alpha }}^*,{\varvec{\theta }}_*,{\varvec{\theta }}^*]}\) denotes the \(H^1\)-projection onto the admissible set \({\mathcal {H}}^{\tau }_{ad}\times {\mathcal {V}}^{\tau }_{ad}\). Next we state how to compute this projection in the continuous setting. If \({\varvec{w}}\in (V\oplus {\varvec{\alpha }}_0)\times ( V\oplus {\varvec{\theta }}_0)\) is given then the \(H^1\)- projection onto \({\mathcal {H}}_{ad}\times {\mathcal {V}}_{ad}\), denoted by \({\varvec{p}}={\mathbb {P}}_{[{\varvec{\alpha }}_*,{\varvec{\alpha }}^*,{\varvec{\theta }}_*,{\varvec{\theta }}^*]}({\varvec{w}})\), is the solution to the following problem: find \({\varvec{p}}\in {\mathcal {H}}_{ad}\times {\mathcal {V}}_{ad}\) such that

$$\begin{aligned} \begin{aligned}&\langle {\varvec{p}}-{\varvec{w}} ,{\varvec{v}}-{\varvec{p}}\rangle \\&\quad =\int _0^T d_t \left( {\varvec{p}}-{\varvec{w}}\right) \cdot d_t\left( {\varvec{v}}-{\varvec{p}}\right) + \left( {\varvec{p}}-{\varvec{w}}\right) \cdot ({\varvec{v}}-{\varvec{p}}) \ge 0 \quad \forall \, {\varvec{v}}\in {\mathcal {H}}_{ad}\times {\mathcal {V}}_{ad}. \end{aligned} \end{aligned}$$

We refer to Antil et al. (2018, Appendix A) about how to compute this projection for the continuous case. The same ideas presented for \({\mathcal {J}}\) apply to Problem 2 defined in Sect. 3.2. Notice that, unlike the discrete \(L^2\)-norm considered in Sect. 5, dealing with the \(H^1\)-topology requires the computation of a variational inequality.

Table 3 Here \(({\varvec{\alpha }}_0,{\varvec{\phi }}_0)\) denotes the initial values. Moreover, \(({\varvec{\alpha }}_*,{\varvec{\phi }}_*)\) and \(({\varvec{\alpha }}^*,{\varvec{\phi }}^*)\) denote the upper and lower bounds in the admissible sets
Table 4 Number of iterations for the \(H^1\) and \(\ell ^2\) norm topologies as we refine the mesh in the time domain. Here N denotes the number of time steps. We observe mesh independence in the case of \(H^1\)

We compare the grid-dependence of the optimization algorithm with respect to the \(\ell ^2\)-norm and \(H^1\)-norm. With this in mind, we consider Problem 3.1 with the same \(\varOmega\), T, number of dipoles, \(D_t\), and target vector field \({\mathbf {f}}_2\) as in the second problem of Sect. 5.1. Here the admissible set is characterized by Table 3. The initial guess \(({\varvec{\alpha }}_{int},{\varvec{\phi }}_{int})\) is a constant function given by the initial condition, namely \(({\varvec{\alpha }}_{int}(t),{\varvec{\phi }}_{int}(t))=({\varvec{\alpha }}_0,{\varvec{\phi }}_0)\) for all \(t\in [0,0.75]\). The values of \({\varvec{\alpha }}_0\) and \({\varvec{\phi }}_0\) are motivated by the numerical solution presented in Sect. 5.1 (see Fig. 5). We have solved problem (4.10) with the termination criterion given by (5.1) and (6.10) for the \(\ell ^2\) and \(H^1\) norm topologies, respectively. The tolerance for both cases is set to \({\texttt {Tol}}=3\times 10^{-5}\). The iteration counts for both cases are presented in Table 4. We observe mesh-independence in the iteration for the \(H^1\)-norm topology, with fewer iterations compared to the \(\ell ^2\)-norm topology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antil, H., Nochetto, R.H. & Venegas, P. Controlling the Kelvin force: basic strategies and applications to magnetic drug targeting. Optim Eng 19, 559–589 (2018). https://doi.org/10.1007/s11081-018-9392-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-018-9392-7

Keywords

Mathematics Subject Classification

Navigation