Skip to main content

Fundamentals and Field-Driven Control of Micro-/Nanorobots

  • Chapter
  • First Online:
Field-Driven Micro and Nanorobots for Biology and Medicine

Abstract

The present chapter discusses the control design of MRI-guided robots in the vasculature to achieve targeted therapy through precise drug delivery. Such robots consist of a polymer-bonded aggregate of nanosized ferromagnetic and drug particles that can be propelled by the gradient coils of an MRI device. The feasibility of the concept has been largely studied in the literature, but few works address the nonlinear control issues related to a fine modeling of the forces acting on the magnetic microrobot. In this chapter, a fine modeling is developed with concerns about the constraints of the application. The notion of optimal trajectory derived from the nonlinear model is presented and shows that one can exploit the complexity of such a model to optimize the tracking performances. Then, different theoretical approaches to design nonlinear controllers with nonlinear observers are proposed, e.g., (a) Lyapunov controller with an adaptive backstepping law, (b) model predictive control (MPC), and (c) optimal control using linear quadratic integral (LQI) controller. The benefits of this fine modeling and the use of advanced control law and observer are illustrated by simulations and experimental results. Finally, perspectives and open problems in the field of MRI-guided robots’ control are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vartholomeos, P., Fruchard, M., Ferreira, A., & Mavroidis, C. (2011). MRI-guided Nanorobotic Systems for Therapeutic and Diagnostic Applications. Annual Review of Biomedical Engineering, 13, 157–184.

    Article  Google Scholar 

  2. Folio, D., & Ferreira, A. (2017). 2D robust magnetic resonance navigation of a ferromagnetic microrobot using Pareto optimality. IEEE-Transactions on Robotics, 33(3), 583–593.

    Article  Google Scholar 

  3. Gillies, G. T., Ritter, R. C., Broaddus, W. C., et al. (1994). Magnetic manipulation instrumentation for medical physics research. Review of Scientific Instruments, 65(3), 533–562.

    Article  Google Scholar 

  4. Quate, E. G., Wika, K. G., Lawson, M. A., et al. (1991). Goniometric motion controller for the superconducting coil in a magnetic stereoaxis system. IEEE Transactions on Biomedical Engineering, 38, 899–905.

    Article  Google Scholar 

  5. Takeda, S.-I., Mishima, F., Fujimoto, S., Izumi, Y., & Nishijima, S. (2006). Development of magnetically targeted drug delivery system using superconducting magnet. Journal of Magnetism and Magnetic Materials, 311, 367–371.

    Article  Google Scholar 

  6. Mathieu, J., Beaudoin, G., & Martel, S. (2006). Method of propulsion of a ferromagnetic Core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Transactions on Biomedical Engineering, 53(2), 292–299.

    Article  Google Scholar 

  7. Mathieu, J.-B., & Martel, S. (2007). Magnetic microparticle steering within the constraints of an MRI system: Proof of concept of a novel targeting approach. Biomedical Microdevices, 9, 801–808.

    Article  Google Scholar 

  8. Tamaz, S., Gourdeau, R., Chanu, A., Mathieu, J.-B., & Martel, S. (2008). Real-time MRI-based control of a ferromagnetic Core for endovascular navigation. IEEE Transactions on Biomedical Engineering, 55(7), 1854–1863.

    Article  Google Scholar 

  9. Martel, S., Mathieu, J.-B., Felfoul, O., et al. (2007). Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Applied Physics Letters, 90(11), 114105.

    Article  Google Scholar 

  10. Yesin, K. B., Vollmers, K., & Nelson, B. J. (2006). Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. International Journal of Robotics Research, 25, 527–536.

    Article  Google Scholar 

  11. Jun, Y.-W., Seo, J.-W., & Cheon, J. (2007). Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Accounts of Chemical Research, 41(2), 179–189.

    Article  Google Scholar 

  12. Dreyfus, R., Beaudry, J., Roper, M. L., et al. (2005). Microscopic artificial swimmers. Nature, 437(6), 862–865.

    Article  Google Scholar 

  13. Behkam, B., & Sitti, M. (2006). Design methodology for biomimetic propulsion of miniature swimming robots. ASME Journal of Dynamic Systems, Measurement and Control, 128, 36–43.

    Article  Google Scholar 

  14. Yesin, K. B., Vollmers, K., & Nelson, B. J. (2004). Analysis and design of wireless magnetically guided microrobots in body fluids. In Proceedings of the IEEE international conference on robotics and automation, New Orleans, USA (pp. 1333–1338).

    Google Scholar 

  15. Abbott, J. J., Peyer, K. E., Lagomarsino, M. C., et al. (2007). How should microrobots swim? In International symposium on robotics research.

    Google Scholar 

  16. Lee, H., Purdon, A. M., Chu, V., & Westervelt, R. M. (2004). Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Letters, 4(5), 995–998.

    Article  Google Scholar 

  17. Martel, S., Mohammadi, M., Felfoul, O., Lu, Z., & Pouponneau, P. (2009). Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. The International Journal of Robotics Research, 28(4), 571–582.

    Article  Google Scholar 

  18. Martel, S., Tremblay, C. C., Ngakeng, S., & Langois, G. (2006). Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Applied Physics Letters, 89(23), 233904.

    Article  Google Scholar 

  19. Plowman, S. A., & Smith, D. L. (1997). Exercise physiology. Needham Heights: Allyn and Bacon.

    Google Scholar 

  20. White, F. (1991). Viscous fluid flow. New York: McGraw Hill.

    Google Scholar 

  21. Kehlenbeck, R., & Di Felice, R. (1999). Empirical relationships for the terminal settling velocity of spheres in cylindrical columns. Chemical Engineering & Technology, 21, 303–308.

    Article  Google Scholar 

  22. Francis, A. W. (1933). Wall effect in falling ball method for viscosity. Physics, 4, 403–406.

    Article  Google Scholar 

  23. Munroe, H. S. (1888). The English versus the continental system of jigging is close sizing advantageous? Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 17.

    Google Scholar 

  24. Tijskens, E., Ramon, H., & De Baerdemaeker, J. (2003). Discrete element for process simulation in agriculture. Journal of Sound and Vibration, 266, 493–514.

    Article  Google Scholar 

  25. Varthomoleos, P., & Mavroidis, C. (2020). Magnetic targeting of aggregated nanoparticles for advanced lung therapies: A robotics approach. In: 3rd IEEE International Conference on Biomedical Robotics and Biomechatronics, 26–29 September 2010, Tokyo, Japan.

    Google Scholar 

  26. Hays, D. (1991). Electrostatic adhesion of non-uniformly charged dielectric sphere. International Physis Conference Series, 118, 223–228.

    Google Scholar 

  27. Hays, D. (1991). Role of electrostatics in adhesion, in fundamentals of adhesion. PLENUMPRESS.

    Google Scholar 

  28. Arcese, L., Fruchard, M., & Ferreira, A. (2012). Endovascular magnetically-guided robots: Navigation modeling and optimization. IEEE-Transactions on Biomedical Engineering, 59(4), 977–987.

    Article  Google Scholar 

  29. Belharet, K., Folio, D., & Ferreira, A. (2013, April). Simulation and planning of a magnetically actuated microrobot navigating in the arteries. IEEE-Transactions on Biomedical Engineering, 60(4), 993–1001.

    Article  Google Scholar 

  30. Arcese, L., Fruchard, M., & Ferreira, A. (2013). Adaptive controller and observer for a magnetic microrobot. IEEE-Transactions on Robotics, 29(4), 1060–1067.

    Article  Google Scholar 

  31. Sadelli, L., Fruchard, M., & Ferreira, A. (May 2017). 2D observer-based control of a vascular microrobot. IEEE-Transactions on Automatic Control, 62(5), 2194–2206.

    Article  MathSciNet  Google Scholar 

  32. Clarke, D., Mohtadi, C., & Tuffs, P. (1987). Generalized predictive control – part I & II. Automatica, 23, 137–160.

    Article  Google Scholar 

  33. Belharet, K., Folio, D., & Ferreira, A. (2011, May). 3D controlled motion of a microrobot using magnetic gradients. Advanced Robotics, 25(8), 1069–1083.

    Article  Google Scholar 

  34. Belharet, K., Folio, D., & Ferreira, A. (2020) Endovascular Navigation of Ferromagnetic Microrobot using MRI-based Predictive Control. In IEEE International Conference on Intelligent Robots and Systems (IROS’10), Taipei, Taiwan, October 18–22, 2010, pp. 2804–2809.

    Google Scholar 

  35. Shin, J., Nonami, K., Fujiwara, D., & Hazawa, K. (2005). Model-based optimal attitude and positioning control of small-scale unmanned helicopter. Robotica, 23(01), 51–63.

    Article  Google Scholar 

  36. Seto, K., Fuji, D., Hiramathu, H., & Watanabe, T. (2002). Motion and vibration control of three dimensional flexible shaking table using LQI control approach. In Proceedings of American control conference (Vol. 4, pp. 3040–3045). IEEE.

    Google Scholar 

  37. Mellal, L., Folio, D., Belharet, K., & Ferreira, A. (2016). Optimal Control of Multiple Magnetic Microbeads Navigating in Microfluidic Channels. In IEEE International Conference on Robotics and Automation (ICRA16), Stockholm, Sweden, May 16–21, 2016.

    Google Scholar 

  38. Arcese, L., Fruchard, M., & Ferreira, A. (2009). Nonlinear modeling and robust controller-observer for a magnetic microrobot in a fluidic environment using MRI gradients. IROS.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, A. (2022). Fundamentals and Field-Driven Control of Micro-/Nanorobots. In: Sun, Y., Wang, X., Yu, J. (eds) Field-Driven Micro and Nanorobots for Biology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-80197-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80197-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80196-0

  • Online ISBN: 978-3-030-80197-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics