Skip to main content
Log in

Fully decoupled, linear, and energy-preserving GSAV difference schemes for the nonlocal coupled sine-Gordon equations in multiple dimensions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we intend to utilize the generalized scalar auxiliary variable (GSAV) approach proposed in recent paper (Ju et al., SIAM J. Numer. Anal., 60 (2022), 1905–1931) for the nonlocal coupled sine-Gordon equation to construct a class of fully decoupled, linear, and second-order accurate energy-preserving scheme. The unconditional unique solvability and discrete energy conservation law of the proposed scheme are rigorously discussed, and the unconditional convergence is then proved by the mathematical induction. Particularly, the convergence analysis covers the proposed scheme in multiple dimensions due to the corresponding nonlinear terms satisfy the global Lipschitz continuity straightforwardly. Finally, time evolution of dynamical behavior of the governing equation with different nonlocal parameters are observed, and ample numerical comparisons demonstrate that the proposed scheme manifests high efficiency in long-time computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Braun, O., Kivshar, Y.: Nonlinear dynamics of the Frenkel-Kontorova model. Phys. Rep. 306, 1–108 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bates, P., Brown, S., Han, J.: Numerical analysis for a nonlocal Allen-Cahn equation. Int. J. Numer. Anal. Mod. 6, 33–49 (2009)

    MathSciNet  Google Scholar 

  3. Bao, W., Dong, X., Zhao, X.: An exponential wave integrator sine pseudospectral method for the Klein-Gordon-Zakharov system. SIAM J. Sci. Comput. 35, A2903–A2927 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bao, W., Zhao, X.: A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein-Gordon-Schrödinger equations in the nonrelativistic limit regime. Numer. Math. 135, 833–873 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cunha, M., Konotop, V., Vázquez, V.: Small-amplitude solitons in a nonlocal sine-Gordon model. Phys. Lett. A 221, 317–322 (1996)

    Article  MathSciNet  CAS  Google Scholar 

  6. Dendy, R.: Plasma dynamics. Oxford University Press, Oxford, UK (1990)

    Book  Google Scholar 

  7. Du, Q., Yang, J.: Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications. J. Comput. Phys. 332, 118–134 (2017)

    Article  MathSciNet  Google Scholar 

  8. Du, Q., Ju, L., Li, X., Qiao, Z.: Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation. J. Comput. Phys. 363, 39–54 (2018)

    Article  MathSciNet  Google Scholar 

  9. Deng, D., Wu, Q.: The studies of the linearly modified energy-preserving finite difference methods applied to solve two-dimensional nonlinear coupled wave equations. Numer. Algorithms 88, 1875–1914 (2021)

    Article  MathSciNet  Google Scholar 

  10. Ekici, M., Zhou, Q., Sonmezoglua, A., Mirzazadehc, M.: Exact solitons of the coupled sine-Gordon equation in nonlinear system. Optik 136, 435–444 (2017)

    Article  Google Scholar 

  11. Guan, Z., Wang, C., Wise, S.: A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation. Numer. Math. 128, 377–406 (2014)

    Article  MathSciNet  Google Scholar 

  12. Guo, S., Mei, L., Li, C., Yan, W., Gao, J.: IMEX Hermite-Galerkin spectral schemes with adaptive time stepping for the coupled nonlocal Gordon-type systems in multiple dimensions. SIAM J. Sci. Comput. 43, B1133–B1163 (2021)

    Article  MathSciNet  Google Scholar 

  13. Guo, S., Yan, W., Li, C., Mei, L.: Dissipation-preserving rational spectral-Galerkin method for strongly damped nonlinear wave system involving mixed fractional Laplacians in unbounded domains. J. Sci. Comput. 93, 53 (2022)

    Article  MathSciNet  Google Scholar 

  14. Guo, S., Li, C., Li, X., Guo, S.: Energy-conserving and time-stepping-varying ESAV-Hermite-Galerkin spectral scheme for nonlocal Klein-Gordon-Schrödinger system with fractional Laplacian in unbounded domains. J. Comput. Phys. 458, 11096 (2022)

    Article  Google Scholar 

  15. Hong, J., Jiang, S., Li, C.: Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations. J. Comput. Phys. 228, 3517–3532 (2009)

    Article  MathSciNet  CAS  Google Scholar 

  16. Huang, C., Guo, B., Huang, D., Li, Q.: Global well-posedness of the fractional Klein-Gordon-Schrödinger system with rough initial data. Sci. China Math. 59, 1345–1366 (2016)

    Article  MathSciNet  Google Scholar 

  17. Hosseini, K., Mayeli, P., Kumar, D.: New exact solutions of the coupled sine-Gordon equations in nonlinear optics using the modified Kudryashov method. J. Mod. Opt. 65, 361–364 (2018)

    Article  MathSciNet  Google Scholar 

  18. Hu, D., Cai, W., Song, Y., Wang, Y.: A fourth-order dissipation-preserving algorithm with fast implementation for space fractional nonlinear damped wave equations. Commun. Nonlinear Sci. Numer. Simul. 91, 105432 (2020)

    Article  MathSciNet  Google Scholar 

  19. Hu, D., Fu, Y., Cai, W., Wang, Y.: Unconditional convergence of conservative spectral Galerkin methods for the coupled fractional nonlinear Klein-Gordon-Schrödinger equations. J. Sci. Comput. 94, 70 (2023)

    Article  Google Scholar 

  20. Josephson, J.: Supercurrents through barries. Adv. Phys. 14, 419–451 (1965)

    Article  Google Scholar 

  21. Ju, L., Li, X., Qiao, Z.: Generalized SAV-exponential integrator schemes for Allen-Cahn type gradient flows. SIAM J. Numer. Anal. 60, 1905–1931 (2022)

    Article  MathSciNet  Google Scholar 

  22. Khusnutdinova, K., Pelinovsky, D.: On the exchange of energy in coupled Klein-Gordon equations. Wave Motion 38, 1–10 (2003)

    Article  MathSciNet  Google Scholar 

  23. Kong, L., Chen, M., Yin, X.: A novel kind of efficient symplectic scheme for Klein-Gordon-Schrödinger equation. Appl. Numer. Math. 15, 481–496 (2019)

    Article  Google Scholar 

  24. Li, R., Lin, X., Ma, Z., Zhang, J.: Existence and uniqueness of solutions for a type of generalized Zakharov system. J. Appl. Math. 2013, 193589 (2013)

    Article  MathSciNet  Google Scholar 

  25. Li, X., Qiao, Z., Wang, C.: Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equation. Math. Comput. 90, 171–188 (2021)

    Article  MathSciNet  Google Scholar 

  26. Liu, Z., Li, X.: The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing. SIAM J. Sci. Comput. 42, B630–B655 (2020)

    Article  MathSciNet  Google Scholar 

  27. Macías-Díaz, J.: Existence of solutions of an explicit energy-conserving scheme for a fractional Klein-Gordon-Zakharov system. Appl. Numer. Math. 151, 40–43 (2020)

    Article  MathSciNet  Google Scholar 

  28. Scott, A., Chu, F., Reible, S.: Magnetic-flux propagation on a Josephson transmission line. J. Appl. Phys. 47, 3272–3286 (1976)

    Article  Google Scholar 

  29. Salas, A.: Exact solutions of coupled sine-Gordon equations. Nonlinear Anal. Real. 11, 3930–3935 (2010)

    Article  MathSciNet  Google Scholar 

  30. Saha Ray, S.: Soliton solutions of nonlinear and nonlocal sine-Gordon equation involving Riesz space fractional derivative. Z. Naturforsch. A 70, 659–667 (2015)

    Article  Google Scholar 

  31. Sagar, B., Saha Ray, S.: An efficient meshfree numerical technique to solve fractional Schamel-KdV equation for ion-acoustic solitary waves in dusty plasma. IEEE T. Plasma Sci. (2023). https://doi.org/10.1109/TPS.2023.3283039

    Article  Google Scholar 

  32. Sagar, B., Saha Ray, S.: A localized meshfree technique for solving fractional Benjamin-Ono equation describing long internal waves in deep stratified fluids. Commun. Nonlinear Sci. Numer. Simul. 123, 107287 (2023)

    Article  MathSciNet  Google Scholar 

  33. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  34. Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644–655 (2014)

    Article  MathSciNet  Google Scholar 

  35. Wang, J., Yang, Z., Zhang, J.: Stability and convergence analysis of high-order numerical schemes with DtN-type absorbing boundary conditions for nonlocal wave equations. IMA J. Numer. Anal. (2023). https://doi.org/10.1093/imanum/drad016

    Article  Google Scholar 

  36. Xiang, X.: Spectral method for solving the system of equations of Schrödinger-Klein-Gordon field. J. Comput. Appl. Math. 21, 161–171 (1988)

    Article  MathSciNet  Google Scholar 

  37. Xiao, A., Wang, C., Wang, J.: Conservative linearly-implicit difference scheme for a class of modified Zakharov systems with high-order space fractional quantum correction. Appl. Numer. Math. 146, 379–399 (2019)

    Article  MathSciNet  Google Scholar 

  38. Yakushevich, L.: Nonlinear physics of DNA. Wiley-VCH, Weinheim (2004)

    Book  Google Scholar 

  39. Yang, X., Ju, L.: Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Engrg. 315, 691–712 (2017)

    Article  MathSciNet  Google Scholar 

  40. Zhou, Y.: Application of discrete functional analysis to the finite difference methods. International Academic Publishers, Beijing (1990)

    Google Scholar 

  41. Zhang, Y., Shen, J.: Efficient structure preserving schemes for the Klein-Gordon-Schrödinger equations. J. Sci. Comput. 89, 47 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their valuable comments and suggestions.

Funding

The work is partially supported by the NSFC (Nos. 12171245, 11971242) and the Science and the Technology Research Project of Education Department of Jiangxi Province (No. GJJ2200365). The work of Linghua Kong is supported by the NSFC (No. 11961036) and the Jiangxi Province Natural Science Fund (Nos. 20224ACB201001, 20224BCD41001).

Author information

Authors and Affiliations

Authors

Contributions

Dongdong Hu: formal analysis, writing—original draft. Linghua Kong: review and editing. Wenjun Cai: review and editing. Yushun Wang: supervision, review and editing.

Corresponding author

Correspondence to Yushun Wang.

Ethics declarations

Ethical approval

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Kong, L., Cai, W. et al. Fully decoupled, linear, and energy-preserving GSAV difference schemes for the nonlocal coupled sine-Gordon equations in multiple dimensions. Numer Algor 95, 1953–1980 (2024). https://doi.org/10.1007/s11075-023-01634-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01634-6

Keywords

Mathematics Subject Classification (2010)

Navigation