Skip to main content
Log in

A generalized scalar auxiliary variable method for the time-dependent Ginzburg-Landau equations

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

This paper develops a generalized scalar auxiliary variable (SAV) method for the time-dependent Ginzburg-Landau equations. The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations. In this method, the system is decoupled and linearized to avoid solving the non-linear equation at each step. The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability, and this is confirmed by the numerical result, and also shows that the numerical algorithm is stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Z, Dai S. Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity. SIAM J Numer Anal, 2001, 38: 1961–1985

    Article  MathSciNet  Google Scholar 

  2. Chen Z, Hoffmann K. Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity. Adv Math Sci Appl, 1995, 5: 363–389

    MathSciNet  Google Scholar 

  3. Chen Z, Hoffmann K, Liang J. On a non-stationary Ginzburg-Landau superconductivity model. Math Method Appl Sci, 1993, 16: 855–875

    Article  Google Scholar 

  4. Du Q. Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity. Appl Anal, 1994, 53: 1–17

    Article  MathSciNet  Google Scholar 

  5. Du Q. Finite element methods for the time-dependent Ginzburg-Landau model of superconductivity. Comput Math Appl, 1994, 27: 119–133

    Article  MathSciNet  Google Scholar 

  6. Ganesh M, Thompson T. A spectrally accurate algorithm and analysis for a Ginzburg-Landau model on superconducting surfaces. Multiscale Model Sim, 2018, 16: 78–105

    Article  MathSciNet  Google Scholar 

  7. Gao H, Ju L, Xie W. A stabilized semi-implicit Euler gauge-invariant method for the time-dependent Ginzburg-Landau equations. J Sci Comput, 2019, 80: 1083–1115

    Article  MathSciNet  Google Scholar 

  8. Gao H, Li B, Sun W. Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity. SIAM J Numer Anal, 2014, 52: 1183–1202

    Article  MathSciNet  Google Scholar 

  9. Gao H, Sun W. An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity. J Comput Phys, 2015, 294: 329–345

    Article  ADS  MathSciNet  Google Scholar 

  10. Gao H, Sun W. A new mixed formulation and efficient numerical solution of Ginzburg-Landau equations under the temporal gauge. SIAM J Sci Comput, 2016, 38: A1339–A1357

    Article  MathSciNet  Google Scholar 

  11. Gao H, Sun W. Analysis of linearized Galerkin-mixed FEMs for the time-dependent Ginzburg-Landau equations of superconductivity. Adv Comput Math, 2018, 44: 923–949

    Article  MathSciNet  Google Scholar 

  12. Gor’kov L, Éliashberg G. Generalization of the Ginburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov J Exp Theo Phys, 1968, 27: 328–334

    ADS  Google Scholar 

  13. Huang F, Shen J. A new class of implicit-explicit BDFk SAV schemes for general dissipative systems and their error analysis. Comput Meth Appl Mech Engrg, 2022, 392: 114718

    Article  ADS  Google Scholar 

  14. Huang F, Shen J, Yang Z. A highly efficient and accurate new scalar auxiliary variable approach for gradient flows. SIAM J Sci Comput, 2020, 42: A2514–A2536

    Article  MathSciNet  Google Scholar 

  15. Hecht F. New development in FreeFem++. J Numer Math, 2012, 20: 251–266

    Article  MathSciNet  Google Scholar 

  16. Heywood J, Rannacher R. Finite-element approximation of the nonstationary Navier-Stokes problem. part IV: Error analysis for second-order time discretization. SIAM J Numer Anal, 1990, 27: 353–384

    Article  MathSciNet  Google Scholar 

  17. Jiang M, Zhang Z, Zhao J. Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation. J Comput Phys, 2022, 456: 110954

    Article  MathSciNet  Google Scholar 

  18. Ju L, Li X, Qiao Z. Generalized SAV-exponential integrator Schemes for Allen-Cahn type gradient flows. SIAM J Numer Anal, 2022, 60(4): 1905–1931

    Article  MathSciNet  Google Scholar 

  19. Ju L, Li X, Qiao Z. Stabilized exponential-SAV schemes preserving energy dissipation law and maximum bound principle for the Allen-Cahn type equations. J Sci Comput, 2022, 92: Art 66

  20. Li B, Wang K, Zhang Z. A Hodge decomposition method for dynamic Ginzburg-Landau equations in nonsmooth domains-a second approach. Commun Comput Phys, 2020, 28: 768–802

    Article  MathSciNet  Google Scholar 

  21. Li B, Zhang Z. Mathematical and numerical analysis of the time-dependent Ginzburg-Landau equations in nonconvex polygons based on Hodge decomposition. Math Comput, 2017, 86: 1579–1608

    Article  MathSciNet  Google Scholar 

  22. Li B, Zhang Z. A new approach for numerical simulation of the time-dependent Ginzburg-Landau equations. J Comput Phys, 2015, 303: 238–250

    Article  ADS  MathSciNet  Google Scholar 

  23. Liu F, Mondello M, Goldenfeld N. Kinetics of the superconducting transition. Phys Rev Lett, 1991, 66: 3071–3074

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Mu M, Huang Y. An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations. SIAM J Numer Anal, 1998, 35: 1740–1761

    Article  MathSciNet  Google Scholar 

  25. Nochetto R, Pyo J. Optimal relaxation parameter for the Uzawa method. Numer Math, 2004, 98: 695–702

    Article  MathSciNet  Google Scholar 

  26. Shen J, Xu J, Yang J. The scalar auxiliary variable (SAV) approach for gradient flows. J Comput Phys, 2018, 353: 407–416

    Article  ADS  MathSciNet  Google Scholar 

  27. Shen J, Xu J, Yang J. A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev, 2019, 61: 474–506

    Article  MathSciNet  Google Scholar 

  28. Shen J, Zhang X X. Discrete maximum principle of a high order finite difference scheme for a generalized Allen-Cahn equation. Commun Math Sci, 2022, 20: 1409–1436

    Article  MathSciNet  Google Scholar 

  29. Tan Z, Tang H. A general class of linear unconditionally energy stable schemes for the gradient flows. J Comput Phys, 2022, 464: 111372

    Article  MathSciNet  Google Scholar 

  30. Tang T, Qiao Z. Efficient numerical methods for phase-field equations (in Chinese). Sci Sin Math, 2020, 50: 1–20

    Google Scholar 

  31. Wang Y, Si Z. A convex splitting method for the time-dependent Ginzburg-Landau equation. Numer Algor, 2023. https://doi.org/10.1007/s11075-023-01672-0

  32. Wu C, Sun W. Analysis of Galerkin FEMs for mixed formulation of time-dependent Ginzburg-Landau equations under temporal gauge. SIAM J Numer Anal, 2018, 56: 1291–1312

    Article  MathSciNet  Google Scholar 

  33. Zhang Y, Shen J. A generalized SAV approach with relaxation for dissipative systems. J Comput Phys, 2022, 464: 111311

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Si.

Ethics declarations

Conflict of Interest The author declares no conflict of interest.

Additional information

This work was completed during the author’s visit to Peking University and supported by the National Natural Science Foundation of China (12126318, 12126302).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Z. A generalized scalar auxiliary variable method for the time-dependent Ginzburg-Landau equations. Acta Math Sci 44, 650–670 (2024). https://doi.org/10.1007/s10473-024-0215-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0215-y

Key words

2020 MR Subject Classification

Navigation