Skip to main content
Log in

An introduction to a hybrid trigonometric box spline surface producing subdivision scheme

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Trigonometric box splines can be considered as the multivariate generalizations of univariate B-splines. This means multivariate trigonometric box splines can be constructed from univariate trigonometric B-splines by suitable adaptive methods. Mainly, this paper is concerned with the construction of a new class of bivariate trigonometric box spline functions with the help of trigonometric B-splines through directional convolution method. These are refinable functions and some of their properties are also investigated. Secondly, a new effective non-stationary subdivision scheme is derived from the two-scale relationship of a particular trigonometric box spline. The non-stationary subdivision scheme is capable of producing such trigonometric box spline surfaces in regular regions. Some important properties along with the interactive modeling capability of this subdivision scheme are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dyn, N.: Subdivision schemes in CAGD. Advances in numerical analysis 2, 36–104 (1992)

    Article  Google Scholar 

  2. Hagen, H. and Roller, D.: Geometric modeling: methods and applications, Springer Science & Business Media (2012)

  3. Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numerica 11, 73–144 (2002)

    Article  MathSciNet  Google Scholar 

  4. Schroder, P.: Subdivision for modeling and animation, In: ACM SIGGRAPH 1998, (1998)

  5. Zorin, D.: Subdivision for modeling and animation, In: SIGGRAPH2000 course notes, (2000)

  6. Kui, Z., Baccou, J., Liandrat, J.: On the construction of multiresolution analyses associated to general subdivision schemes. Mathematics of Computation 90(331), 2185–2208 (2021)

    Article  MathSciNet  Google Scholar 

  7. Cohen, A., Dyn, N.: Nonstationary subdivision schemes and multiresolution analysis. SIAM Journal on Mathematical Analysis 27(6), 1745–1769 (1996)

    Article  MathSciNet  Google Scholar 

  8. Jena, M., Shunmugaraj, P., Das, P.C.: A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes. Computer Aided Geometric Design 20(2), 61–77 (2003)

    Article  MathSciNet  Google Scholar 

  9. Zhang, B., Zheng, H., Song, W.: A Non-stationary Catmull-Clark subdivision scheme with shape control. Graphical Models 106, 101046 (2019)

    Article  Google Scholar 

  10. Conti, C., Donatelli, M., Romani, L., Novara, P.: Convergence and normal continuity analysis of nonstationary subdivision schemes near extraordinary vertices and faces. Constructive Approximation 50(3), 457–496 (2019)

    Article  MathSciNet  Google Scholar 

  11. Badoual, A., Novara, P., Romani, L., Schmitter, D., Unser, M.: A non-stationary subdivision scheme for the construction of deformable models with sphere-like topology. Graphical Models 94, 38–51 (2017)

    Article  MathSciNet  Google Scholar 

  12. Charina, M., Conti, C., Guglielmi, N., Protasov, V.: Regularity of non-stationary subdivision: a matrix approach. Numerische Mathematik 135(3), 639–678 (2017)

    Article  MathSciNet  Google Scholar 

  13. Conti, C., Dyn, N., Manni, C., Mazure, M.L.: Convergence of univariate non-stationary subdivision schemes via asymptotic similarity. Computer Aided Geometric Design 37, 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  14. Novara, P., Romani, L., Yoon, J.: Improving smoothness and accuracy of Modified Butterfly subdivision scheme. Applied Mathematics and Computation 272, 64–79 (2016)

    Article  MathSciNet  Google Scholar 

  15. Jena, H., Jena, M.K.: Construction of trigonometric box splines and the associated non-stationary subdivision schemes. International Journal of Applied and Computational Mathematics 7, 129 (2021)

  16. Jena, H., Jena, M.K.: A hybrid non-stationary subdivision scheme based on triangulation. International Journal of Applied and Computational Mathematics 7, 169 (2021)

    Article  MathSciNet  Google Scholar 

  17. Goodman, T.N.T., Lee, S.L.: Convergence of nonstationary cascade algorithms. Numerische Mathematik 84(1), 1–33 (1999)

    Article  MathSciNet  Google Scholar 

  18. Loop, C: Smooth subdivision surfaces based on triangles, Master’s thesis, Department of Mathematics, University of Utah, Utah (1987)

  19. Chen, J., Grundel, S., Yu, T.: A flexible \(C^{2}\) subdivision scheme on the sphere: with application to biomembrane modelling. SIAM Journal on Applied Algebra and Geometry 1(1), 459–483 (2017)

    Article  MathSciNet  Google Scholar 

  20. Chang, Yu, McDonnell, K.T. and Qin, H.: A new solid subdivision scheme based on box splines, In: Proceedings of the seventh ACM symposium on Solid modeling and applications, ACM Press, 226-233 (2002)

  21. De Boor, C., Höllig, K. and Riemenschneider, S.:Box splines (Vol.98), Springer Science & Business Media (2013)

  22. De Boor, C.: On the evaluation of box splines. Numerical Algorithms 5(1), 5–23 (1993)

    Article  MathSciNet  Google Scholar 

  23. Daehlen, M., Lyche, T.: Box splines and applications, Geometric Modeling, 35-93 (1991)

  24. Dahmen, W., Micchelli, C.A.: Subdivision algorithms for the generation of box spline surfaces. Computer Aided Geometric Design 1(2), 115–129 (1984)

    Article  Google Scholar 

  25. Charina, M., Conti, C., Jetter, K., Zimmermann, G.: Scalar multivariate subdivision schemes and box splines. Computer Aided Geometric Design 28(5), 285–306 (2011)

    Article  MathSciNet  Google Scholar 

  26. Daubechies, I.: Ten lectures on wavelets, Society of Industrial and Applied Mathematics (1992)

  27. Cohen, A., Dyn, N.: Nonstationary subdivision schemes and multiresolution analysis. SIAM Journal on Mathematical Analysis 27(6), 1745–1769 (1996)

    Article  MathSciNet  Google Scholar 

  28. Han, B.: Nonhomogeneous wavelet systems in high dimensions. Applied and Computational Harmonic Analysis 32(2), 169–196 (2012)

    Article  MathSciNet  Google Scholar 

  29. Chui, C., Stockler, J., Ward, J.D.: Compactly supported box-spline wavelets. Approximation Theory and its Applications 8(3), 77–100 (1992)

    Article  MathSciNet  Google Scholar 

  30. Schoenberg, I.: On trigonometric spline interpolation. Journal of Mathematics and Mechanics 13(5), 795–825 (1964)

    MathSciNet  Google Scholar 

  31. Zhang, J.: C-curves: an extension of cubic curves. Computer Aided Geometric Design 13(3), 199–217 (1996)

    Article  MathSciNet  Google Scholar 

  32. Zhang, J.: Two different forms of CB-splines. Computer Aided Geometric Design 14(1), 31–41 (1997)

    Article  MathSciNet  Google Scholar 

  33. Lü, Y., Wang, G., Yang, X.: Uniform trigonometric polynomial B-spline curves. Science in China Series F Information Sciences 45(5), 335–343 (2002)

    Article  MathSciNet  Google Scholar 

  34. Jena, M.K.: Construction of compactly supported wavelets from trigonometric B-splines. International Journal of Wavelets, Multiresolution and Information Processing 9(5), 843–865 (2011)

    Article  MathSciNet  Google Scholar 

  35. Jena, M.K., Shunmugaraj, P., Das, P.C.: A subdivision algorithm for trigonometric spline curves. Computer Aided Geometric Design 19(1), 71–88 (2002)

    Article  MathSciNet  Google Scholar 

  36. Walz, V.: Identities for trigonometric B-splines with an application to curve design. BIT Numerical Mathematics 37(1), 189–201 (1997)

    Article  MathSciNet  Google Scholar 

  37. Lyche, T., Winther, R.: A stable recurrence relation for trigonometric B-splines. Journal of Approximation Theory 25(3), 266–279 (1979)

    Article  MathSciNet  Google Scholar 

  38. Conti, C. and Jetter, K.: A note on convolving refinable function vectors, In: Cohen, A., Rabut, C. and Schumaker, L.L. (eds.) Curve and Surface Fitting: Saint-Malo 1999, Vanderbilt University Press, Nashville, 18:5, 397-427 (2000)

  39. Conti, C., Pitolli, F.: A new class of bivariate refinable functions suitable for cardinal interpolation. Rendiconti di Matematica, Serie VII 27, 61–171 (2007)

    MathSciNet  Google Scholar 

  40. Conti, C., Gori, L. and Pitolli, F.: Some recent results on a new class of bivariate refinable functions, Rendiconti di Matematica - Serie VII (61), Universitae Politecnico di Torino, 301-312 (2003)

  41. Chui, C., De Villiers, J.: Wavelet subdivision methods: GEMS for rendering curves and surfaces. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  42. Zorin, D., Schröder, P. and Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology, In: SIGGRAPH ’96:Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, New York, USA, 189-192 (1996)

  43. Dyn, N., Levin, D.: Analysis of asymptotically equivalent binary subdivision schemes. Journal of Mathematical Analysis and Applications 193(2), 594–621 (1995)

    Article  MathSciNet  Google Scholar 

  44. Umlauf, G.: Analyzing the characteristic map of triangular subdivision schemes. Constructive Approximation 16(1), 145–155 (2000)

    Article  MathSciNet  Google Scholar 

  45. Han, B.: Classification and construction of bivariate subdivision schemes, Curve and Surface Fitting: Saint-Malo, 187-197 (2002)

  46. Peters, J., Reif, U.: Subdivision surfaces. Springer, Berlin, Heidelberg (2008)

    Book  Google Scholar 

  47. Kobbelt, L.: \(\sqrt{3}\)-subdivision, In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 103-112 (2000)

  48. Conti, C., Romani, L.: Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction. Journal of Computational and Applied Mathematics 236(4), 543–556 (2011)

    Article  MathSciNet  Google Scholar 

  49. Charina, M., Conti, C.: Polynomial reproduction of multivariate scalar subdivision schemes. Journal of Computational and Applied Mathematics 240, 51–61 (2013)

    Article  MathSciNet  Google Scholar 

  50. Charina, M., Conti, C., Romani, L.: Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix. Numerische Mathematik 127(2), 223–254 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their constructive remarks and useful suggestions for the improvement of this article.

Funding

This research is supported by the Department of Science and Technology, Govt. of India, through INSPIRE scheme with the grant no. DST/INSPIRE Fellowship/2016/IF160366 to the first author.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally.

Corresponding author

Correspondence to Hrushikesh Jena.

Ethics declarations

Ethics Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

The authors have no objections if the manuscript is published by Springer Nature.

Conflict of interest

The authors declare that they have no conflicts/competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Here it is described that how the subdivision weights around the extraordinary vertices of valences 3 and 4 have been derived in Sect. 4. Basically, the mth-level subdivision weights around an extraordinary vertex of valence 3 are designed by using the regular subdivision weights as follows:

$$\begin{aligned} \begin{aligned}&{\widetilde{w}}_{0}^{(m)} = \frac{1}{2}w_{0}^{(m)} + \frac{3}{2}w_{1}^{(m)},\;\;\;{\widetilde{w}}_{1}^{(m)} = \frac{1}{3} (1-{\widetilde{w}}_{0}^{(m)})\\&{\widetilde{w}}_{3}^{(m)}=3 w_{2}^{(m)} - w_{3}^{(m)} - \frac{5}{2}w_{4}^{(m)} + \frac{1}{2}w_{5}^{(m)},\;\; {\widetilde{w}}_{5}^{(m)}=6 w_{4}^{(m)} - 4(w_{2}^{(m)}- w_{3}^{(m)}). \end{aligned} \end{aligned}$$

On the other hand, the mth-level subdivision weights around an extraordinary vertex of valence 4 are designed as given below:

$$\begin{aligned} \begin{aligned} \widetilde{\widetilde{w}}_{0}^{(m)}&= \frac{15}{16} w_{0}^{(m)} -\frac{3}{8} w_{1}^{(m)} - \frac{1}{24 \cos ^{4}\big (\frac{h}{2^{m+1}}\big )},\;\; \widetilde{\widetilde{w}}_{1}^{(m)} = \frac{1}{4} (1-\widetilde{\widetilde{w}}_{0}^{(m)}),\\ \widetilde{\widetilde{w}}_{3}^{(m)}&= \frac{1}{2} w_{2}^{(m)} + w_{3}^{(m)},\;\;\widetilde{\widetilde{w}}_{4}^{(m)} = \frac{1}{4} w_{2}^{(m)} + w_{4}^{(m)},\\ \widetilde{\widetilde{w}}_{5}^{(m)}&= \frac{3}{4} w_{2}^{(m)} + w_{5}^{(m)},\; \widetilde{\widetilde{w}}_{7}^{(m)} = \frac{1}{32 \cos ^{4}\big (\frac{h}{2^{m+1}}\big )},\\ \text {and}\; \widetilde{\widetilde{w}}_{6}^{(m)}&= \frac{1}{2} - \frac{1}{24 \cos ^{4}\big (\frac{h}{2^{m+1}}\big )}. \end{aligned} \end{aligned}$$

All the subdivision weights around the extraordinary vertices are designed in such a way that, the sums of the weights in all mask maps in Figs. 4 and 5 are equal to 1.

Appendix B

Let us take \(\mathbf {{Z}}\) and \(D^{(\gamma _{1}, \gamma _{2})}\) as defined in Definition 8. Similarly, the mth-level symbol \(a_{\star }^{(m)}(z_{1}, z_{2})\) of the non-stationary subdivision scheme is given in (24). Now if we consider the directional derivatives \(D^{(\gamma _{1}, \gamma _{2})}\) of \(a_{\star }^{(m)}(z_{1}, z_{2})\) such that \(\gamma _{1}+\gamma _{2}=2\), then \((\gamma _{1}, \gamma _{2}) \in \{(1,1),\;(2,0),\;(0,2)\}\). After computation of different directional derivatives of \(a_{\star }^{(m)}(z_{1}, z_{2})\), it is found that

$$\begin{aligned} \begin{aligned}&\displaystyle {\max _{\gamma _{1}+\gamma _{2}=2}\;\max _{(\xi _{1}, \xi _{2})\in \mathbf {{Z}}}} \vert D^{(\gamma _{1},\gamma _{2})}a_{\star }^{(m)}(\xi _{1}, \xi _{2})\vert \\&= \vert D^{(2,0)}a_{\star }^{(m)}(-1,1)\vert = \vert D^{(0,2)}a_{\star }^{(m)}(1,-1)\vert = 2\;\bigg (\frac{1-\cos (\frac{h}{2^{m}})}{1+\cos (\frac{h}{2^{m}})}\bigg )^{2} =: E_{1}^{(m)}. \end{aligned} \end{aligned}$$

Similarly, considering the directional derivatives \(D^{(\gamma _{1}, \gamma _{2})}\) of \(a_{\star }^{(m)}(z_{1}, z_{2})\) such that \(\gamma _{1}+\gamma _{2}=3\), then \((\gamma _{1}, \gamma _{2}) \in \{(2,1),\;(1,2),\;(3,0),\;(0,3)\}\). It is obtained that

$$\begin{aligned} \begin{aligned}&\displaystyle \max _{\gamma _{1}+\gamma _{2}=3}\;\max _{(\xi _{1}, \xi _{2})\in \mathbf {{Z}}} \vert D^{(\gamma _{1},\gamma _{2})}a_{\star }^{(m)}(\xi _{1}, \xi _{2})\vert \\&= \vert D^{(3,0)}a_{\star }^{(m)}(-1,1)\vert = \vert D^{(0,3)}a_{\star }^{(m)}(1,-1)\vert = 6\;\bigg (\frac{1-\cos (\frac{h}{2^{m}})}{1+\cos (\frac{h}{2^{m}})}\bigg )^{2} =: E_{2}^{(m)}. \end{aligned} \end{aligned}$$

Finally, if we consider the directional derivatives \(D^{(\gamma _{1}, \gamma _{2})}\) of \(a_{\star }^{(m)}(z_{1}, z_{2})\) such that \(\gamma _{1}+\gamma _{2}=4\), then \((\gamma _{1}, \gamma _{2}) \in \{(3,1),\;(1,3),\;(2,2),\;(4,0),\;(0,4)\}\). It is observed that

$$\begin{aligned} \begin{aligned}&\displaystyle {\max _{\gamma _{1}+\gamma _{2}=4}\;\max _{(\xi _{1}, \xi _{2})\in \textbf{Z}}} \vert D^{(\gamma _{1},\gamma _{2})}a_{\star }^{(m)}(\xi _{1}, \xi _{2})\vert = \vert D^{(4,0)}a_{\star }^{(m)}(-1,1)\vert = \vert D^{(0,4)}a_{\star }^{(m)}(1,-1)\vert \\&= \frac{24 \;\vert (1-\cos (\frac{h}{2^{m}}))(-2+\cos (\frac{h}{2^{m}}))\vert }{(1+\cos (\frac{h}{2^{m}}))^{2}} =: E_{3}^{(m)}. \end{aligned} \end{aligned}$$

Since \(\frac{2^{-3m}E_{2}^{(m)}}{2^{-2m}E_{1}^{(m)}} = \frac{3}{2^{m}},\;\forall \;m\in \mathcal {N}_{0}\),

$$\begin{aligned} \max \{2^{-2m} E_{1}^{(m)},\;2^{-3m} E_{2}^{(m)}\} = {\left\{ \begin{array}{ll}2^{-3m} E_{2}^{(m)},\;\;&{}\text {for}\;m = 0,1, \\ 2^{-2m} E_{1}^{(m)}, &{}\text {for}\; m\ge 2.\\ \end{array}\right. } \end{aligned}$$

Now for \(m = 0,1\), it can be observed that

$$\begin{aligned} \frac{2^{-4m}E_{3}^{(m)}}{2^{-3m}E_{2}^{(m)}} = 2^{-m}\;4\; \bigg \vert \frac{-2+\cos (\frac{h}{2^{m}})}{1-\cos (\frac{h}{2^{m}})}\bigg \vert > 1. \end{aligned}$$

Also for \(m \ge 2\), we get that

$$\begin{aligned} \frac{2^{-4m}E_{3}^{(m)}}{2^{-2m}E_{1}^{(m)}} = 2^{-2m}\;12\; \bigg \vert \frac{-2+\cos (\frac{h}{2^{m}})}{1-\cos (\frac{h}{2^{m}})}\bigg \vert > 1. \end{aligned}$$

Thus, as a result

$$\begin{aligned} \begin{aligned}&\displaystyle {\max _{2\le \gamma _{1}+\gamma _{2} \le 4}\;\max _{(\xi _{1}, \xi _{2})\in \textbf{Z}} 2^{-m(\gamma _{1}+\gamma _{2})}} \vert D^{(\gamma _{1},\gamma _{2})}a_{\star }^{(m)}(\xi _{1}, \xi _{2})\vert \\&= \max \{2^{-2m} E_{1}^{(m)},\;2^{-3m} E_{2}^{(m)},\; 2^{-4m} E_{3}^{(m)}\}\\&= 2^{-4m} E_{3}^{(m)} = 2^{-4m}\;\frac{24 \;\vert (1-\cos (\frac{h}{2^{m}}))(-2+\cos (\frac{h}{2^{m}}))\vert }{(1+\cos (\frac{h}{2^{m}}))^{2}}. \end{aligned} \end{aligned}$$

Appendix C

We here describe how the bounds between the non-stationary and stationary weights for regular subdivision rules are obtained in the verification of Assumption (iii) of Theorem 5.2 while proving the Theorem 5.4. From (35), we can exploit the identity \(\vert 1-\cos {\big (\frac{h}{2^{m}}\big )}\vert \le \frac{\kappa }{4^m}\) to compute the bounds, letting \(\kappa \) be some positive constant. For different m, \(\cos {\big (\frac{h}{2^{m}}\big )}\) is always positive since \(0<h\le \frac{\pi }{3}\).

First we compute the bound of \(w_{1}^{(m)}-\frac{3}{32}\). Note that,

$$\begin{aligned} w_{1}^{(m)}-\frac{3}{32} = \frac{1+2\cos {\big (\frac{h}{2^{m}}\big )}}{32 \cos ^{4}{\big (\frac{h}{2^{m+1}}\big )}} - \frac{3}{32} = \frac{2\cos {(\frac{h}{2^{m}})} + 1}{8 (1+\cos {(\frac{h}{2^{m}})})^2} - \frac{3}{32}. \end{aligned}$$

By making use of the fact that \(2\cos {\big (\frac{h}{2^{m}}\big )} + 1 \le 3\), we get

$$\begin{aligned} \begin{aligned} \bigg \vert w_{1}^{(m)}-\frac{3}{32}\bigg \vert&\le \frac{3}{8}\bigg \vert \frac{1}{(1+\cos {(\frac{h}{2^{m}})})^2}-\frac{1}{4}\bigg \vert \\&=\frac{3}{8}\bigg \vert \bigg (\frac{1}{1+\cos {(\frac{h}{2^{m}})}}+\frac{1}{2}\bigg ) \bigg (\frac{1}{1+\cos {(\frac{h}{2^{m}})}}-\frac{1}{2}\bigg )\bigg \vert \\&\le \frac{3}{8}\big (\frac{1}{2} + 1\big ) \bigg \vert \frac{1-\cos {(\frac{h}{2^{m}})}}{1+\cos {(\frac{h}{2^{m}})}} \bigg \vert \le \frac{9}{16}\big \vert 1-\cos {\big (\frac{h}{2^{m}}\big )}\big \vert \\&\le \frac{9}{16}\; \kappa \; \frac{1}{4^{m}} = \frac{\mathcal {C}_{1}}{4^{m}},\;\;\; \text {where}\;\mathcal {C}_{1}=\frac{9}{16} \kappa . \end{aligned} \end{aligned}$$

From the regular vertex point subdivision rule we know that \(w_{0}^{(m)} + 6 w_{1}^{(m)} = 1\). Using this fact the bound of \((w_{0}^{(m)}-\frac{7}{16})\) can be computed as follows. \(\big \vert w_{0}^{(m)}-\frac{7}{16}\big \vert = \big \vert (1- 6 w_{1}^{(m)})-\big (1-\frac{9}{16}\big )\big \vert = 6\big \vert w_{1}^{(m)}-\frac{3}{32}\big \vert \le \frac{\mathcal {C}_{0}}{4^{m}}\), where \(\mathcal {C}_{0} = 6\mathcal {C}_{1}\).

Now, \(w_{2}^{(m)}-\frac{3}{128} = \frac{1+2\cos {(\frac{h}{2^{m}})}}{128 \cos ^{6}{(\frac{h}{2^{m+1}})}}= \frac{1}{16}\big (\frac{2\cos {(\frac{h}{2^{m}})} + 1}{(1+\cos {(\frac{h}{2^{m}})})^3} - \frac{3}{8}\big )\). Again using \(2\cos {\big (\frac{h}{2^{m}}\big )} + 1 \le 3\), we get

$$\begin{aligned} \begin{aligned} \bigg \vert w_{2}^{(m)}-\frac{3}{128}\bigg \vert&\le \frac{3}{16}\bigg \vert \frac{1}{\big (1+\cos {(\frac{h}{2^{m}})}\big )^3}-\frac{1}{2^3} \bigg \vert \\&= \frac{3}{16}\bigg \vert \bigg ( \frac{1}{1+\cos {(\frac{h}{2^{m}})}}-\frac{1}{2}\bigg ) \bigg (\frac{1}{(1+\cos {(\frac{h}{2^{m}})})^2}+ \frac{1}{2(1+\cos {(\frac{h}{2^{m}})})}+\frac{1}{4}\bigg )\bigg \vert \\&\le \frac{3}{16}\big (1+\frac{1}{2}+\frac{1}{4}\big )\bigg \vert \frac{1-\cos {(\frac{h}{2^{m}})}}{2(1+\cos {(\frac{h}{2^{m}})})} \bigg \vert \le \frac{21}{128}\big \vert 1-\cos {\big (\frac{h}{2^{m}}\big )}\big \vert \\&\le \frac{21}{128}\; \kappa \; \frac{1}{4^{m}} = \frac{\mathcal {C}_{2}}{4^{m}},\;\;\; \text {where}\;\mathcal {C}_{1}=\frac{21}{128} \kappa . \end{aligned} \end{aligned}$$

In a similar manner, the bounds of \((w_{3}^{(m)}-\frac{9}{64})\), \((w_{4}^{(m)}-\frac{1}{128})\) and \((w_{5}^{(m)}-\frac{39}{128})\) can be obtained to show that \(\big \vert w_{3}^{(m)}-\frac{9}{64}\big \vert \le \frac{\mathcal {C}_{3}}{4^{m}},\;\; \big \vert w_{4}^{(m)}-\frac{1}{128}\big \vert \le \frac{\mathcal {C}_{4}}{4^{m}},\;\; \big \vert w_{5}^{(m)}-\frac{39}{128}\big \vert \le \frac{\mathcal {C}_{5}}{4^{m}}\) with \(\mathcal {C}_{3}\), \(\mathcal {C}_{4}\), \(\mathcal {C}_{5}\) being finite positive constants independent of m. Particularly in the derivations of the bounds of \(\big (w_{3}^{(m)}-\frac{9}{64}\big )\) and \(\big (w_{5}^{(m)}-\frac{39}{128}\big )\) the identities, respectively, \(\big (1+2\cos {\big (\frac{h}{2^{m}}\big )}\big )^2 \le 9\) and \(\big (5+6\cos \big (\frac{h}{2^{m}}\big )+2\cos \big (\frac{h}{2^{m-1}}\big )\big ) \le 13\) can be used.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, H., Jena, M.K. An introduction to a hybrid trigonometric box spline surface producing subdivision scheme. Numer Algor 95, 73–116 (2024). https://doi.org/10.1007/s11075-023-01565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01565-2

Keywords

MSC Classification

Navigation