Skip to main content
Log in

Construction of Trigonometric Box Splines and the Associated Non-Stationary Subdivision Schemes

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we define trigonometric box splines on regular triangular meshes using directional convolution. Using the theory, a non-stationary subdivision scheme for a particular trigonometric box spline is introduced. Later, it is generalized to a non-stationary subdivision scheme for arbitrary triangular meshes. It is also shown that the new subdivision scheme is a non-stationary generalization of the popular stationary Loop scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Anderson, L.E., Stewart, N.F.: Introduction to the mathematics of the subdivision surfaces, SIAM (2010), https://doi.org/10.1137/1.9780898717617

  2. Badoual, A., Novara, P., Romani, L., Schmitter, D., Unser, M.: A non-stationary subdivision scheme for the construction of deformable models with sphere-like topology. Graph. Models 94, 38–51 (2017)

    Article  MathSciNet  Google Scholar 

  3. Brigham, E.O.: The Fast Fourier Transform and its Applications, vol. 448. Prentice Hall Englewood Cliffs, NJ (1988)

    Google Scholar 

  4. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)

    Article  Google Scholar 

  5. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision, vol. 453. American Mathematical Society, Providence (1991)

    MATH  Google Scholar 

  6. Charina, M., Conti, C., Guglielmi, N., Protasov, V.: Regularity of non-stationary subdivision: a matrix approach. Numer. Math. 135(3), 639–678 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chui, C.K., Stöckler, J., Ward, J.D.: Compactly supported box-spline wavelets. Approx. Theory Appl. 8(3), 77–100 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Conti, C., Donatelli, M., Novara, P., Romani, L.: A linear algebra approach to the analysis of non-stationary subdivision for 2-manifold meshes with arbitrary topology. arXiv preprint arXiv:1707.01954 (2017)

  9. Conti, C., Donatelli, M., Romani, L., Novara, P.: Convergence and normal continuity analysis of nonstationary subdivision schemes near extraordinary vertices and faces. Constr. Approx. 50, 457–496 (2019). https://doi.org/10.1007/s00365-019-09477-y

  10. Conti, C., Dyn, N., Manni, C., Mazure, M.L.: Convergence of univariate non-stationary subdivision schemes via asymptotic similarity. Comput. Aided Geomet. Des. 37, 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  11. Conti, C., Gori, L., Pitolli, F.: Some recent results on a new class of bivariate refinable functions. Rend. Sem. Mat. Univ. Politec. Torino 61, 301–312 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Conti, C., Jetter, K.: A note on convolving refinable function vectors. In: A. Cohen, C. Rabut, L.L. Schumaker (Eds.), Curve and surface fitting: Saint-Malo, 1999, Vanderbilt University Press, Nashville, TN, pp. 135–142 (2000)

  13. Conti, C., Pitolli, F.: A new class of bivariate refinable functions suitable for cardinal interpolation. Rendiconti di Matemat Serie VII 27, 61–171 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Dahmen, W., Micchelli, C.A.: Subdivision algorithms for the generation of box spline surfaces. Comput. Aided Geomet. Des. 1(2), 115–129 (1984)

    Article  Google Scholar 

  15. Daubechies, I.: Ten lectures on wavelets, vol. 61. Siam, New Delhi (1992)

    Book  Google Scholar 

  16. De Boor, C., Höllig, K., Riemenschneider, S.: Box splines, vol. 98. Springer, Cham (2013)

    MATH  Google Scholar 

  17. Doo, D., Sabin, M.: Behaviour of recursive division surfaces near extraordinary points. Comput. Aided Des. 10(6), 356–360 (1978)

    Article  Google Scholar 

  18. Farin, G.: Curves and surfaces for computer-aided geometric design: a practical guide. Elsevier, Ny (2014)

    MATH  Google Scholar 

  19. Gérot, C.: Elementary factorisation of box spline subdivision. Adv. Comput. Math. 45(1), 153–171 (2019)

    Article  MathSciNet  Google Scholar 

  20. Ghaffar, A., Iqbal, M., Bari, M., Muhammad Hussain, S., Manzoor, R., Sooppy Nisar, K., Baleanu, D.: Construction and application of nine-tic b-spline tensor product ss. Mathematics 7(8), 675 (2019)

    Article  Google Scholar 

  21. Goswami, J.C., Chan, A.K.: Fundamentals of wavelets: theory, algorithms, and applications, vol. 233. John Wiley & Sons, NY (2011)

    Book  Google Scholar 

  22. Han, B., Jia, R.Q.: Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29(5), 1177–1199 (1998)

    Article  MathSciNet  Google Scholar 

  23. Han, B., Shen, Z.: Wavelets from the loop scheme. J. Fourier Anal. Appl. 11(6), 615–637 (2005)

    Article  MathSciNet  Google Scholar 

  24. Harim, N.A., Karim, S.A.A., Othman, M., Saaban, A., Ghaffar, A., Nisar, K.S., Baleanu, D.: Positivity preserving interpolation by using rational quartic spline. AIMS Math. 5(4), 3762–3782 (2020)

    Article  MathSciNet  Google Scholar 

  25. Hoschek, J., Lasser, D., Schumaker, L.L.: Fundamentals of computer aided geometric design. AK Peters, Ltd, NY (1993)

    MATH  Google Scholar 

  26. Jafari, H., Tajadodi, H.: New method for solving a class of fractional partial differential equations with applications. Thermal Sci. 22(Suppl. 1), 277–286 (2018)

    Article  Google Scholar 

  27. Jafari, H., Tajadodi, H., Baleanu, D.: A numerical approach for fractional order riccati differential equation using b-spline operational matrix. Fract. Calculus Appl. Anal. 18(2), 387–399 (2015)

    Article  MathSciNet  Google Scholar 

  28. Jena, M.K.: Construction of compactly supported wavelets from trigonometric B-splines. Int. J. Wavelets Multiresol. Inf. Process. 9(05), 843–865 (2011)

    Article  MathSciNet  Google Scholar 

  29. Jena, M.K., Shunmugaraj, P., Das, P.: A subdivision algorithm for trigonometric spline curves. Comput. Aided Geomet. Des. 19(1), 71–88 (2002)

    Article  MathSciNet  Google Scholar 

  30. Jena, M.K., Shunmugaraj, P., Das, P.: A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes. Comput. Aided Geomet. Des. 20(2), 61–77 (2003)

    Article  MathSciNet  Google Scholar 

  31. Jeong, B., Yoon, J.: Analysis of non-stationary hermite subdivision schemes reproducing exponential polynomials. J. Comput. Appl. Math. 349, 452–469 (2019)

    Article  MathSciNet  Google Scholar 

  32. Khalid, A., Ghaffar, A., Naeem, M.N., Nisar, K.S., Baleanu, D.: Solutions of bvps arising in hydrodynamic and magnetohydro-dynamic stability theory using polynomial and non-polynomial splines. Alexandria Eng. J. 60(1), 941–953 (2021)

    Article  Google Scholar 

  33. Khater, M.M., Nisar, K.S., Mohamed, M.S.: Numerical investigation for the fractional nonlinear space-time telegraph equation via the trigonometric quintic b-spline scheme. Math. Methods Appl. Sci. 44(6), 4598–4606 (2021)

    Article  MathSciNet  Google Scholar 

  34. Kobbelt, L.: \(\sqrt{3}\)-subdivision. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, . ACM Press/Addison-Wesley Publishing Co., NY, pp. 103–112 (2000)

  35. Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah, Department of Mathematics (1987)

  36. Luo, H., Deng, C.X., Zhu, J.L.: An method of constructing bivariate box-spline. In: 2008 International Conference on Wavelet Analysis and Pattern Recognition, vol. 2, pp. 530–534. IEEE (2008)

  37. Mustahsan, M., Kiran, A., Singh, J., Nisar, K.S., Kumar, D.: Higher order b-spline differential quadrature rule to approximate generalized rosenau-rlw equation. Math. Methods Appl. Sci. 43(11), 6812–6822 (2020)

    Article  MathSciNet  Google Scholar 

  38. Rovenski, V.: Modeling of Curves and Surfaces with MATLAB. Springer, NY (2010)

    Book  Google Scholar 

  39. Stollnitz, E.J., DeRose, T.D., DeRose, A.D., Salesin, D.H.: Wavelets for computer graphics: theory and applications. Morgan Kaufmann, NY (1996)

    Google Scholar 

  40. Tassaddiq, A., Khalid, A., Naeem, M.N., Ghaffar, A., Khan, F., Karim, S.A.A., Nisar, K.S.: A new scheme using cubic b-spline to solve non-linear differential equations arising in visco-elastic flows and hydrodynamic stability problems. Mathematics 7(11), 1078 (2019)

    Article  Google Scholar 

  41. Zhang, B., Zheng, H., Song, W.: A non–stationary Catmull-Clark subdivision scheme with shape control. Graph. Models 106, 101046 (2019)

Download references

Acknowledgements

This research is supported by the Department of Science and Technology, Govt. of India (Regd. No. DST/INSPIRE Fellowship/2016/IF160366). The authors are very much thankful to the anonymous referees and the editor of this paper for their valuable comments and suggestions for the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Kumar Jena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, H., Jena, M.K. Construction of Trigonometric Box Splines and the Associated Non-Stationary Subdivision Schemes. Int. J. Appl. Comput. Math 7, 129 (2021). https://doi.org/10.1007/s40819-021-01069-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01069-4

Keywords

Mathematics Subject Classification

Navigation