Skip to main content
Log in

Parallel strategies for Direct Multisearch

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Direct multisearch (DMS) is a derivative-free optimization class of algorithms, suited for computing approximations to the complete Pareto front of a given multiobjective optimization problem. In DMS class, constraints are addressed with an extreme barrier approach, only evaluating feasible points. It has a well-supported convergence analysis and simple implementations present a good numerical performance, both in academic test sets and in real applications. Recently, this numerical performance was improved with the definition of a search step based on the minimization of quadratic polynomial models, corresponding to the algorithm BoostDMS. In this work, we propose and numerically evaluate strategies to improve the performance of BoostDMS, mainly through parallelization applied to the search and to the poll steps. The final parallelized version not only considerably decreases the computational time required for solving a multiobjective optimization problem, but also increases the quality of the computed approximation to the Pareto front. Extensive numerical results will be reported in an academic test set and in a chemical engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Andreani, R., Custódio, A.L., Raydan, M.: Using first-order information in direct multisearch for multiobjective optimization. Optim. Methods Softw., accepted for publication (2022)

  2. Audet, C., Béchard, V., Le Digabel, S.: Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J. Global Optim. 41, 299–318 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., Salomon, L.: Performance indicators in multiobjective optimization. European J. Oper. Res. 292, 397–422 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Audet, C., Dennis Jr., J.E., Le Digabel, S.: Parallel space decomposition of the mesh adaptive direct search algorithm. SIAM J. Optim. 19, 1150–1170 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer, Switzerland (2017)

    Book  MATH  Google Scholar 

  6. Audet, C., Savard, G., Zghal, W.: Multiobjective optimization through a series of single-objective formulations. SIAM J. Optim. 19, 188–210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Audet, C., Savard, G., Zghal, W.: A mesh adaptive direct search algorithm for multiobjective optimization. European J. Oper. Res. 204, 545–556 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans. Evol. Comp. 12, 269–283 (2008)

    Article  Google Scholar 

  9. Bigeon, J., Le Digabel, S., Salomon, L.: DMulti-MADS: Mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization. Comput. Optim. Appl. 79, 301–338 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Branke, J., Schmeck, H., Deb, K., M. Reddy S.: Parallelizing multi-objective evolutionary algorithms: cone separation. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), 1952–1957, Portland Oregon (2004)

  11. Brás, C.P., Custódio, A.L.: On the use of polynomial models in multiobjective directional direct search. Comput. Optim. Appl. 77, 897–918 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, B., Zhao, J., Lv, Z., Liu, X.: A distributed parallel cooperative coevolutionary multiobjective evolutionary algorithm for large-scale optimization. IEEE T. Ind. Inform. 13, 2030–2038 (2017)

    Article  Google Scholar 

  13. Cocchi, G., Liuzzi, G., Papini, A., Sciandrone, M.: An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints. Comput. Optim Appl. 69, 267–296 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Conn, A. R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. MOS-SIAM Series Optimization. USA, SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  15. Custódio, A. L., Diouane, Y., Garmanjani, R., Riccietti, E.: Worst-case complexity bounds of directional direct-search methods for multiobjective derivative-free optimization. J. Optim. Theory Appl. 188, 73–93 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Custódio, A.L., Madeira, J.F.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective optimization. SIAM J. Optim. 21, 1109–1140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Davis, C.: Theory of positive linear dependence. Amer. J. Math. 76, 733–746 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE T. Evolut. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  19. Deb, K., Zope, P., Jain, A.: Distributed computing of Pareto-optimal solutions with evolutionary algorithms. In: Fonseca, C.M., Fleming, P. J., Zitzler, E., Thiele, L., Deb, K. (eds.) Evolutionary Multi-criterion Optimization, 2632, 534–549. Lecture Notes in Computer Science, Springer, Berlin (2003)

  20. Dennis Jr., J.E., Torczon, V.: Direct search methods on parallel machines. SIAM J. Optim. 1, 448–474 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fan, S., Chang, J.: A parallel particle swarm optimization algorithm for multi-objective optimization problems. Eng. Opt. 41, 673–697 (2009)

    Article  MathSciNet  Google Scholar 

  23. Fioriti, D., Pintus, S., Lutzemberger, G., Poli, D.: Economic multi-objective approach to design off-grid microgrids: a support for business decision making. Renew. Energy 159, 693–704 (2020)

    Article  Google Scholar 

  24. Fonseca, C. M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: Proceedings of the 2006 Congress on Evolutionary Computation (CEC’06), 1157–1163. IEEE, Vancouver, British Columbia (2006)

  25. Griffin, J.D., Kolda, T.G.: Asynchronous parallel hybrid optimization combining DIRECT and GSS. Optim. Methods Softw. 25, 797–817 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. He, J., Verstak, A., Watson, L.T., Sosonkina, M.: Performance modeling and analysis of a massively parallel direct–part 1. Int. J. High Perf. Comp. Appl. 23, 14–28 (2009)

    Article  Google Scholar 

  27. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, Waltham (2012)

    Google Scholar 

  28. Hough, P.D., Kolda, T.G., Torczon, V.J.: Asynchronous parallel pattern search for nonlinear optimization. SIAM J. Sci Comput. 23, 134–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, A., Xue, B., Zhang, M.: Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection. Inf. Sci. 523, 245–265 (2020)

    Article  MathSciNet  Google Scholar 

  30. Liuzzi, G., Lucidi, S., Rinaldi, F.: A derivative-free approach to constrained multiobjective nonsmooth optimization. SIAM J. Optim. 26, 2744–2774 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20, 172–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pereira, D.A., Sales, T.P., Rade, D.A.: Multi-objective frequency and damping optimization of tow-steered composite laminates. Composite Struct. 256, 112932 (2021)

    Article  Google Scholar 

  33. Talbi, E.G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello, C.A.: Parallel approaches for multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.) Multiobjective Optimization, 5252, 349–372. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2008)

  34. Tavares, S.: Contributions to the Development of an Integrated Toolbox of Solvers in Derivative-Free Optimization. Master’s Thesis. NOVA School of Science and Technology, Portugal (2020)

    Google Scholar 

  35. Vaz, A.I.F., Vicente, L.N.: A particle swarm pattern search method for bound constrained global optimization. J Global Optim. 39, 197–219 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Watson, L.T., Baker, C.A.: A fully-distributed parallel global search algorithm. Eng. Comput. 18, 155–169 (2001)

    Article  MATH  Google Scholar 

  37. Zhou, Y., Tan, Y.: GPU-based parallel multi-objective particle swarm optimization. Int. J. Artif. Intell. 7, 125–141 (2011)

    Google Scholar 

  38. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms – a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel problem solving from nature - PPSN V: 5th International Conference, 1498, 292–301. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, Germany (1998)

  39. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE T. Evolut. Comput. 7, 117–132 (2003)

    Article  Google Scholar 

Download references

Funding

Support for authors was provided by national funds through FCT – Fundação para a Ciência e a Tecnologia I. P., under the scope of projects PTDC/MAT-APL/28400/2017, UIDB/00297/2020, and UIDP/00297/2020, the last two only for second and third authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Custódio.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix.: Pareto front approximations for the styrene problem

Appendix.: Pareto front approximations for the styrene problem

Table 3

Table 3 Pareto front approximations for the styrene problem

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, S., Brás, C.P., Custódio, A.L. et al. Parallel strategies for Direct Multisearch. Numer Algor 92, 1757–1788 (2023). https://doi.org/10.1007/s11075-022-01364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01364-1

Keywords

Mathematics Subject Classification (2010)

Navigation