Skip to main content
Log in

On the use of polynomial models in multiobjective directional direct search

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Polynomial interpolation or regression models are an important tool in Derivative-free Optimization, acting as surrogates of the real function. In this work, we propose the use of these models in the multiobjective framework of directional direct search, namely the one of Direct Multisearch. Previously evaluated points are used to build quadratic polynomial models, which are minimized in an attempt of generating nondominated points of the true function, defining a search step for the algorithm. Numerical results state the competitiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Afshari, H., Hare, W., Tesfamariam, S.: Constrained multi-objective optimization algorithms: review and comparison with application in reinforced concrete structures. Appl. Soft Comput. 83, 105631 (2019)

    Google Scholar 

  2. Akhtar, T., Shoemaker, C.A.: Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection. J. Glob. Optim. 64, 17–32 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer, Cham (2017)

    MATH  Google Scholar 

  4. Audet, C., Dennis Jr., J.E.: Analysis of generalized pattern search. SIAM J. Optim. 13, 889–903 (2003)

    MATH  Google Scholar 

  5. Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17, 188–217 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Audet, C., Savard, G., Zghal, W.: Multiobjective optimization through a series of single-objective formulations. SIAM J. Optim. 19, 188–210 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Branke, J., Deb, K., Miettinen, K., Slowiński, R. (eds.): Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer, Berlin (2008)

    MATH  Google Scholar 

  8. Brito, R.P., Sebastião, H., Godinho, P.: Efficient skewness/semivariance portfolios. J. Asset Manag. 17, 331–346 (2016)

    Google Scholar 

  9. Brito, R.P., Sebastião, H., Godinho, P.: Portfolio management with higher moments: the cardinality impact. Int. Trans. Oper. Res. 26, 2531–2560 (2019)

    MathSciNet  Google Scholar 

  10. Burachik, R.S., Kaya, C.Y., Rizvi, M.M.: A new scalarization technique and new algorithms to generate Pareto fronts. SIAM J. Optim. 27, 1010–1034 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Chan, T.M.: Klee’s measure problem made easy. In: IEEE 54th Annual Symposium on Foundations of Computer Science, Vol. 2013, pp. 410–419. IEEE (2013)

  12. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  13. Cocchi, G., Liuzzi, G., Papini, A., Sciandrone, M.: An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints. Comput. Optim. Appl. 69, 267–296 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Conn, A.R., Le Digabel, S.: Use of quadratic models with mesh-adaptive direct search for constrained black box optimization. Optim. Methods Softw. 28, 139–158 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization, MPS-SIAM Series on Optimization. SIAM, Philadelphia (2009)

    MATH  Google Scholar 

  16. Custódio, A.L., Madeira, J.F.A.: MultiGLODS: global and local multiobjective optimization using direct search. J. Glob. Optim. 72, 323–345 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Custódio, A.L., Madeira, J.F.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective optimization. SIAM J. Optim. 21, 1109–1140 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Custódio, A.L., Rocha, H., Vicente, L.N.: Incorporating minimum Frobenius norm models in direct search. Comput. Optim. Appl. 46, 265–278 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Datta, R., Regis, R.G.: A surrogate-assisted evolution strategy for constrained multi-objective optimization. Exp. Syst. Appl. 57, 270–284 (2016)

    Google Scholar 

  20. Davis, C.: Theory of positive linear dependence. Am. J. Math. 76, 733–746 (1954)

    MathSciNet  MATH  Google Scholar 

  21. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Google Scholar 

  22. Deshpande, S., Watson, L.T., Canfield, R.A.: Pareto front approximation using a hybrid approach. Procedia Comput. Sci. 18, 521–530 (2013)

    Google Scholar 

  23. Deshpande, S., Watson, L.T., Canfield, R.A.: Multiobjective optimization using an adaptive weighting scheme. Optim. Methods Softw. 31, 110–133 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Feliot, P., Bect, J., Vazquez, E.: A Bayesian approach to constrained single and multi-objective optimization. J. Glob. Optim. 26, 97–133 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Fliege, J., Vaz, A.I.F.: A method for constrained multiobjective optimization based on SQP techniques. SIAM J. Optim. 26, 2091–2119 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: Proceedings of the 2006 Congress on Evolutionary Computation (CEC’06), IEEE, pp. 1157–1163 (2006)

  28. Handl, J., Kell, D.B., Knowles, J.: Multiobjective optimization in bioinformatics and computational biology. IEEE-ACM Trans. Comput. Bioinform. 4, 279–292 (2007)

    Google Scholar 

  29. Hirpa, D., Hare, W., Lucet, Y., Pushak, Y., Tesfamariam, S.: A bi-objective optimization framework for three-dimensional road alignment design. Transp. Res. Part C Emerging Technol. 65, 61–78 (2016)

    Google Scholar 

  30. Jahn, J.: Introduction to the Theory of Nonlinear Optimization. Springer, Berlin (1996)

    MATH  Google Scholar 

  31. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Lacour, R., Klamroth, K., Fonseca, C.M.: A box decomposition algorithm to compute the hypervolume indicator. Comput. Oper. Res. 79, 347–360 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Liuzzi, G., Lucidi, S., Rinaldi, F.: A derivative-free approach to constrained multiobjective nonsmooth optimization. SIAM J. Optim. 26, 2744–2774 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Operations Research and Management Science. Springer, New York (1998)

    MATH  Google Scholar 

  35. Potrebko, P.S., Fiege, J., Biagioli, M., Poleszczuk, J.: Investigating multi-objective fluence and beam orientation IMRT optimization. Phys. Med. Biol. 62, 5228–5244 (2017)

    Google Scholar 

  36. Powell, M.J.D.: Developments of NEWUOA for minimization without derivatives. IMA J. Numer. Anal. 28, 649–664 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Rangaiah, G.P., Bonilla-Petriciolet, A. (eds.): Multi-objective Optimization in Chemical Engineering: Developments and Applications. Wiley, Chichester (2013)

    Google Scholar 

  38. Regis, R.G.: Multi-objective constrained black-box optimization using radial basis function surrogates. J. Comput. Sci. 16, 140–155 (2016)

    MathSciNet  Google Scholar 

  39. Ryu, J.-H., Kim, S.: A derivative-free trust-region method for biobjective optimization. SIAM J. Optim. 24, 334–362 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Thacker, W.I., Zhang, J., Watson, L.T., Birch, J.B., Iyer, M.A., Berry, M.W.: Algorithm 905: SHEPPACK: modified Shepard algorithm for interpolation of scattered multivariate data. ACM Trans. Math. Softw. 37, 1–20 (2010)

    MATH  Google Scholar 

  41. Thomann, J., Eichfelder, G.: A trust-region algorithm for heterogeneous multiobjective optimization. SIAM J. Optim. 29, 1017–1047 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Wiecek, M.M., Ehrgott, M., Engau, A.: Multiple Criteria Decision Analysis. Continuous Multiobjective Programming, pp. 739–815. Springer, New York (2016)

    Google Scholar 

  43. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature—PPSN V: 5th International Conference Amesterdam, The Netherlands, pp. 292–301. Springer, Berlin, Heidelberg, Germany (1998)

  44. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2003)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous referees, whose comments and suggestions improved the quality of the paper.

Funding

Support for both authors was provided by national funds through FCT – Fundação para a Ciência e a Tecnologia I. P., under the scope of Projects PTDC/MAT-APL/28400/2017 and UIDB/00297/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Custódio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brás, C.P., Custódio, A.L. On the use of polynomial models in multiobjective directional direct search. Comput Optim Appl 77, 897–918 (2020). https://doi.org/10.1007/s10589-020-00233-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00233-8

Keywords

Mathematics Subject Classification

Navigation