Skip to main content
Log in

On nested Picard iterative integrators for highly oscillatory second-order differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is devoted to the construction and analysis of uniformly accurate (UA) nested Picard iterative integrators (NPI) for highly oscillatory second-order differential equations. The equations involve a dimensionless parameter ε ∈ (0,1], and their solutions are highly oscillatory in time with wavelength at \(\boldsymbol {\mathcal {O}}(\varepsilon ^{2})\), which brings severe burdens in numerical computation when ε ≪ 1. In this work, we first propose two NPI schemes for solving a differential equation. The schemes are uniformly first- and second-order accurate for all ε ∈ (0,1]. Moreover, they are super convergent when the time-step size is smaller than ε2. Then, the schemes are generalized to a system of differential equations with the same uniform accuracies. Error bounds are rigorously established and numerical results are reported to confirm the error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the author on reasonable request.

References

  1. Ariel, G., Engquist, B, Tsai, R.: A multiscale method for highly oscillatory ordinary differential equations with resonance. Math. Comput. 78, 929–956 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bao, W., Dong, X.: Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bao, W., Zhao, X.: Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime. J. Comput. Phys. 398, 108886 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bao, W., Cai, Y., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52, 2488–2511 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bao, W., Dong, X., Zhao, X.: Uniformly accurate multiscale time integrators for highly oscillatory second order differential equations. J. Math. Study 47, 111–150 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baumstark, S., Faou, E., Schratz, K.: Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comp. 87, 1227–1254 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cai, Y., Wang, Y.: Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 57, 1602–1624 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  8. Castella, F., Chartier, P., Méhats, F., Murua, A.: Stroboscopic averaging for the nonlinear schrödinger equation. Found. Comput. Math. 15, 519–559 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chartier, P., Crouseilles, N., Lemou, M., Méhats, F.: Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear schrödinger equations. Numer. Math. 129, 211–250 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cohen, D.: Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems. IMA J. Numer. Anal. 26, 34–59 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cohen, D., Hairer, E., Lubich, C.: Modulated Fourier expansions of highly oscillatory differential equations. Found. Comput. Math. 3, 327–345 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cohen, D., Hairer, E., Lubich, C.: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT Numer. Math. 45, 287–305 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110, 113–143 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Condon, M., Deaño, A., Iserles, A: On highly oscillatory problems arising in electronic engineering. ESAIM Math. Model. Numer. Anal. 43, 785–804 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Condon, M., Deaño, A., Iserles, A: On second order differential equations with highly oscillatory forcing terms. Proc. R. Soc. A 466, 1809–1828 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Duncan, D. B.: Symplectic finite difference approximations of the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 34, 1742–1760 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Engquist, B., Tsai, Y.: Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comp. 74, 1707–1742 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Faou, E., Schratz, K.: Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime. Numer. Math. 126, 441–469 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Garcia-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gauckler, L.: Error analysis of trigonometric integrators for semilinear wave equations. SIAM J. Numer. Anal. 53, 1082–1106 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  22. Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A: Math. Gen. 39, 5495–5507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)

    MATH  Google Scholar 

  25. Hochbruck, M., Ostermann, A.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Iserles, A: On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA J. Numer. Anal. 24, 365–391 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lorenz, K., Jahnke, T., Lubich, C.: Adiabatic integrators for highly oscillatory second-order linear differential equations with time-varying eigendecomposition. BIT Numer. Math. 45, 91–115 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Machihara, S., Nakanishi, K., Ozawa, T.: Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations. Math. Ann. 322, 603–621 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Masmoudi, N., Nakanishi, K.: From nonlinear Klein-Gordon equation to a system of coupled nonlinear Schrödinger equations. Math. Ann. 324, 359–389 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Najman, B: The nonrelativistic limit of the nonlinear Klein-Gordon equation. Nonlinear Anal. 15, 217–228 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18, 731–755 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sanz-Serna, J. M.: Mollified impulse methods for highly oscillatory differential equations. SIAM J. Numer. Anal. 46, 1040–1059 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sanz-Serna, J. M.: Modulated Fourier expansions and heterogeneous multiscale methods. IMA J. Numer. Anal. 29, 595–605 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schratz, K., Wang, Y., Zhao, X.: Low-regularity integrators for nonlinear Dirac equations. Math. Comp. 90, 189–214 (2021)

    Article  MATH  MathSciNet  Google Scholar 

  36. Strauss, W., Vázquez, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28, 271–278 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tao, T.: Local and Global Analysis of Nonlinear Dispersive and Wave Equations. CBMS Regi. Cmf. Ser. Math. AMS, Providence (2006)

  38. Tsutsumi, M.: Nonrelativistic approximation of nonlinear Klein-Gordon equations in two space dimensions. Nonlinear Anal. 8, 637–643 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  40. Weinan, E.: Analysis of the heterogeneous multiscale method for ordinary differential equations. Commun. Math. Sci. 1, 423–436 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: The heterogeneous multiscale method: a review. Commun. Comput. Phys. 2, 367–450 (2007)

    MATH  MathSciNet  Google Scholar 

  42. Zhao, X.: Uniformly accurate (UA) multiscale time integrators for second order oscillatory differential equations with large initial data. BIT Numer. Math. 57, 649–683 (2017)

    Article  MATH  Google Scholar 

Download references

Funding

This work was partially supported by the National Natural Science Foundation of China grants 12001221, Hubei Provincial Science and Technology Innovation Base (Platform) Special Project 2020DFH002, and the Fundamental Research Funds for the Central Universities CCNU19TD010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Define

$$ \begin{array}{@{}rcl@{}} {a_{1}^{n}} := \lvert y^{n}\rvert^{2} + \lvert \frac{\dot{y}^{n}}{\lambda}\rvert^{2}, \quad {b_{1}^{n}} := \lvert y^{n}\rvert^{2} - \lvert \frac{\dot{y}^{n}}{\lambda}\rvert^{2}, \quad {c_{1}^{n}} := \frac{\overline{y^{n}} \dot{y}^{n} + \overline{\dot{y}^{n}} y^{n}}{\lambda},\\ {A_{1}^{n}} := (2{a_{1}^{n}} + {b_{1}^{n}}) y^{n} + {c_{1}^{n}} \frac{\dot{y}^{n}}{\lambda},\qquad {B_{1}^{n}} := {b_{1}^{n}} y^{n} - {c_{1}^{n}} \frac{\dot{y}^{n}}{\lambda},\\ {C_{1}^{n}} := {c_{1}^{n}} y^{n} + (2{a_{1}^{n}} - {b_{1}^{n}}) \frac{\dot{y}^{n}}{\lambda},\qquad {D_{1}^{n}} := {c_{1}^{n}} y^{n} + {b_{1}^{n}} \frac{\dot{y}^{n}}{\lambda}. \end{array} $$

The functions used in the first-order NPI scheme (11) with (8) are:

$$ \begin{array}{@{}rcl@{}} f_{1}^{n, 1}(s) = - \frac{1}{32\varepsilon^{2}\lambda^{2}} \left( {B_{1}^{n}}-4\lambda s{C_{1}^{n}}\right), \qquad f_{3}^{n, 1}(s) = \frac{1}{32\varepsilon^{2}\lambda^{2}} {B_{1}^{n}},\\ g_{1}^{n, 1}(s) = - \frac{1}{32\varepsilon^{2}\lambda^{2}} \left( 4 \lambda s {A_{1}^{n}} + 4{C_{1}^{n}} + 3{D_{1}^{n}}\right),\qquad g_{3}^{n, 1}(s) = \frac{1}{32\varepsilon^{2}\lambda^{2}} {D_{1}^{n}}. \end{array} $$

For the second-order NPI scheme, we further define

$$ \begin{array}{@{}rcl@{}} &&{a_{2}^{n}} := (y^{n})^{2} + \left( \frac{\dot{y}^{n}}{\lambda}\right)^{2}, \quad {b_{2}^{n}} := (y^{n})^{2} - \left( \frac{\dot{y}^{n}}{\lambda}\right)^{2}, \quad {c_{2}^{n}} := \frac{2y^{n} \dot{y}^{n}}{\lambda},\\ &&{A_{2}^{n}} = \overline{{A_{1}^{n}}}, \qquad {B_{2}^{n}} = \overline{{B_{1}^{n}}}, \qquad {C_{2}^{n}} = \overline{{C_{1}^{n}}}, \qquad {D_{2}^{n}} = \overline{{D_{1}^{n}}}. \end{array} $$

The functions used in the second-order NPI scheme (12) with (10) are:

$$ \begin{array}{@{}rcl@{}} f_{k}^{n,2}(s) &=& \frac{1}{3072\varepsilon^{4}\lambda^{4}}\left( 2f_{k,1}^{n,2}(s) + f_{k, 2}^{n, 2}(s)\right),\\ g_{k}^{n,2}(s) &=& \frac{1}{3072\varepsilon^{4}\lambda^{4}}\left( 2g_{k,1}^{n,2}(s) + g_{k, 2}^{n, 2}(s)\right), \end{array} $$

for k = 1, 3, 5 with

$$ \begin{array}{@{}rcl@{}} f_{1, j}^{n, 2}(s) & =& 9 b_j^n A_j^n - 6a_j^n B_j^n + 2b_j^n B_j^n - 21 c_j^n C_j^n - 8c_j^n D_j^n \\ && \quad + 24(c_j^n A_j^n -c_j^n B_j^n - 6a_j^n C_j^n + b_j^n C_j^n - 3a_j^n D_j^n + 2b_j^n D_j^n) \lambda s\\ && \quad + 24(- 2 a_j^n A_j^n + b_j^n A_j^n + c_j^n C_j^n) \lambda^2 s^2, \\ f_{3, j}^{n, 2}(s) & =& -9b_j^n A_j^n + 6a_j^n B_j^n - 3b_j^n B_j^n + 21c_j^n C_j^n + 9c_j^n D_j^n\\ && \quad + 12(c_j^n A_j^n + b_j^n C_j^n)\lambda s,\\ f_{5, j}^{n, 2}(s) & =& b_j^n B_j^n - c_j^n D_j^n,\\ g_{1, j}^{n, 2}(s) & = &-9c_j^n A_j^n + 28c_j^n B_j^n + 144a_j^n C_j^n + 27b_j^n C_j^n +54a_j^n D_j^n - 26b_j^n D_j^n \\ && \quad + 24(2a_j^n A_j^n - b_j^n A_j^n + a_j^n B_j^n + c_j^n C_j^n + c_j^n D_j^n) \lambda s\\ && \quad + 24(c_j^n A_j^n -2a_j^n C_j^n - b_j^n C_j^n) \lambda^2 s^2, \\ g_{3, j}^{n, 2}(s) & =& -9c_j^n A_j^n - 3c_j^n B_j^n - 21b_j^n C_j^n + 6a_j^n D_j^n - 9b_j^n D_j^n\\ && \quad - 12(b_j^n A_j^n - c_j^n C_j^n)\lambda s,\\ g_{5, j}^{n, 2}(s) & = &c_j^n B_j^n + b_j^n D_j^n, \end{array} $$

for j = 1, 2.

Appendix 2

Define

$$ \begin{array}{@{}rcl@{}} a^{n} := \lvert \textbf{z}^{n}\rvert^{2} + \lvert {\Lambda}^{-1} \dot{\mathbf{z}}^{n}\rvert^{2}, \quad b^{n} := \lvert \textbf{z}^{n}\rvert^{2} - \lvert {\Lambda}^{-1} \dot{\mathbf{z}}^{n}\rvert^{2}, \\ c^{n} := (\textbf{z}^{n})^{*} {\Lambda}^{-1} \dot{\mathbf{z}}^{n} + (\dot{\mathbf{z}}^{n})^{*} {\Lambda}^{-1}\textbf{z}^{n},\\ \textbf{A}^{n} := (2a^{n} + b^{n}) \textbf{z}^{n} + c^{n} {\Lambda}^{-1} \dot{\mathbf{z}}^{n},\qquad \textbf{B}^{n} := b^{n} \textbf{z}^{n} - c^{n} {\Lambda}^{-1} \dot{\mathbf{z}}^{n},\\ \textbf{C}^{n} := c^{n} \textbf{z}^{n} + (2a^{n} - b^{n}) {\Lambda}^{-1} \dot{\mathbf{z}}^{n},\qquad \textbf{D}^{n} := c^{n} \textbf{z}^{n} + b^{n} {\Lambda}^{-1} \dot{\mathbf{z}}^{n}. \end{array} $$

The functions used in the modified first-order NPI scheme (19)–(21) are:

$$ \begin{array}{@{}rcl@{}} \textbf{f}_{1}^{n, 1}(s) = - \frac{{\Lambda}^{-1}}{32\varepsilon^{2}} \left( \varepsilon^{2}\textbf{B}^{n}-4s\textbf{C}^{n} \right), \qquad \textbf{f}_{3}^{n, 1}(s) = \frac{{\Lambda}^{-1}}{32} \textbf{B}^{n},\\ \textbf{g}_{1}^{n, 1}(s) = - \frac{{\Lambda}^{-1}}{32\varepsilon^{2}} \left( 4 s \textbf{A}^{n} + 4\varepsilon^{2}\textbf{C}^{n} + 3\varepsilon^{2}\textbf{D}^{n}\right),\qquad \textbf{g}_{3}^{n, 1}(s) = \frac{{\Lambda}^{-1}}{32} \textbf{D}^{n},\\ \dot{\textbf{f}}_{1}^{n, 1}(s) = - \frac{1}{32\varepsilon^{2}} \left( 4 s \textbf{A}^{n} + 3\varepsilon^{2}\textbf{D}^{n}\right), \qquad \dot{\textbf{f}}_{3}^{n, 1}(s) = \frac{3}{32} \textbf{D}^{n},\\ \dot{\textbf{g}}_{1}^{n, 1}(s) = - \frac{1}{32\varepsilon^{2}} \left( 4 \varepsilon^{2} \textbf{A}^{n} - \varepsilon^{2}\textbf{B}^{n} + 4s\textbf{C}^{n} \right),\qquad \dot{\textbf{g}}_{3}^{n, 1}(s) = -\frac{3}{32} \textbf{B}^{n}. \end{array} $$

When considering the nonlinearity f(z) = diag(zz)z, we only need to change the above an,bn,cn to the following expressions:

$$ \begin{array}{@{}rcl@{}} a^{n} := \text{diag} (\textbf{z} \textbf{z}^{*}) + \text{diag}({\Lambda}^{-1}\dot{\textbf{z}}\dot{\textbf{z}}^{*} {\Lambda}^{-1}), \\ b^{n} := \text{diag} (\textbf{z} \textbf{z}^{*}) - \text{diag}({\Lambda}^{-1}\dot{\textbf{z}}\dot{\textbf{z}}^{*} {\Lambda}^{-1}), \\ c^{n} := \text{diag}(\textbf{z}^{n} (\dot{\textbf{z}}^{n})^{*} {\Lambda}^{-1}) + \text{diag}({\Lambda}^{-1} \dot{\textbf{z}}^{n} (\textbf{z}^{n})^{*}). \end{array} $$

Appendix 3

Proof Proof of Theorem 2

Noticing that \(\lvert {\sin \limits } x\rvert \le \lvert x\rvert \), we could modify the estimates (34), (35), (41), and (42), respectively, as

$$ \begin{array}{@{}rcl@{}} && \lvert \tilde{I}^{n,1}(s)\rvert \le {{\int}_{0}^{s}} \lvert \sin(\lambda(s-w))f(\tilde{y}^{n,0}(w))\rvert dw \le C \frac{\tau^{2}}{\varepsilon^{2}}, \end{array} $$
(45)
$$ \begin{array}{@{}rcl@{}} && \lvert \tilde{f}^{n,1}(s) - f(\tilde{y}^{n,1}(s))\rvert \le C \lvert \tilde{I}^{n,1}(s)\rvert^{2} \le C\frac{\tau^{4}}{\varepsilon^{4}}, \end{array} $$
(46)
$$ \begin{array}{@{}rcl@{}} && \lvert \xi^{n, 0}(s)\rvert \le {{\int}_{0}^{s}} \lvert \sin(\lambda(s-w)) f(y(t_{n}+w))\rvert dw \le C \frac{\tau^{2}}{\varepsilon^{2}}, \end{array} $$
(47)
$$ \begin{array}{@{}rcl@{}} && \lvert \xi^{n, 1}(s)\rvert \le {{\int}_{0}^{s}} \lvert \sin(\lambda(s-w)) \left( y^{n, 0}(w) - y(t_{n}+w)\right)\rvert dw \le C \frac{\tau^{4}}{\varepsilon^{4}}. \end{array} $$
(48)

Thus, the error estimate for the error energy becomes

$$ \begin{array}{@{}rcl@{}} && \mathcal{E}(e^{n+1}, \dot{e}^{n+1}) - \mathcal{E}(e^n, \dot{e}^n)\\ &\le & ~ \tau \mathcal{E}(e^n, \dot{e}^n) + C (\tau + 1) \left( \frac{\tau^9}{\varepsilon^8}+ {\int}_{0}^{\tau} \lvert f(y(t_n+s)) - f(\tilde{y}^{n, 1}(s))\rvert^2 ds\right),\\ &\le & C\left( \tau \mathcal{E}(e^n, \dot{e}^n) + \frac{\tau^9}{\varepsilon^8}\right), \end{array} $$

which leads to the error bound \(\lvert y(t_{n}) - y^{n}\rvert + \varepsilon ^{2} \lvert \dot {y}(t_{n}) - \dot {y}^{n}\rvert \le C \frac {\tau ^{4}}{\varepsilon ^{4}}\). □

Appendix 4

Table 1 Numerical error eτ(1) of EIs for (3)
Table 2 Numerical error eτ(1) of MTIs for (3)
Table 3 Numerical error eτ(1) of NPIs for (3)
Table 4 Numerical error eτ(1) of mNPIs for (13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. On nested Picard iterative integrators for highly oscillatory second-order differential equations. Numer Algor 91, 1627–1651 (2022). https://doi.org/10.1007/s11075-022-01317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01317-8

Keywords

Navigation