Skip to main content
Log in

Uniformly accurate nested Picard iterative integrators for the Klein-Gordon-Schrödinger equation in the nonrelativistic regime

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We establish a class of uniformly accurate nested Picard iterative integrator (NPI) Fourier pseudospectral methods for the nonlinear Klein-Gordon-Schrödinger equation (KGS) in the nonrelativistic regime, involving a dimensionless parameter ε ≪ 1 inversely proportional to the speed of light. Actually, the solution propagates waves in time with O(ε2) wavelength when 0 < ε ≪ 1, which brings significant difficulty in designing accurate and efficient numerical schemes. The NPI method is designed by separating the oscillatory part from the non-oscillatory part, and integrating the former exactly. Based on the Picard iteration, the NPI method can be applied to derive arbitrary higher-order methods in time with optimal and uniform accuracy (w.r.t. ε ∈ (0,1]), and the corresponding error estimates are rigorously established. In addition, the practical implementation of the second-order NPI method via Fourier pseupospectral discretization is clearly demonstrated, with extensions to the third-order NPI. Some numerical examples are provided to support our theoretical results and show the accuracy and efficiency of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datas and codes can be found at https://github.com/xuanxuanzhou/NPI-method-matlab-code-for-KGS.

References

  1. Darwish, A., Fan, E.G.: A series of new explicit exact solutions for the coupled Klein-Gordon-Schrödinger equations. Chaos Solitons Fractals 20, 609–617 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hasegawa, A., Kodama, Y.: Solitons in optical communications. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  3. Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations in the energy space. Found. Comput. Math. 18, 731–755 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo, B.L., Li, Y.S.: Attractor for dissipative Klein-Gordon-Schrödinger equations in R3. J. Differ. Equ. 136, 356–377 (1997)

    Article  MATH  Google Scholar 

  5. Guo, B.L., Miao, C.X.: Asymptotic behavior of coupled Klein-Gordon-Schrödinger equations. Sci. China Ser. A 25, 705–714 (1995)

    Google Scholar 

  6. Guo, B.L.: Global solution for some problem of a class of equations in interaction of complex Schrödinger field and real Klein-Gordon field. Sci. China Ser. A. 25, 97–107 (1982)

    Google Scholar 

  7. Banquet, C., Ferreira, L.C.F., Villamizar-Roa, E.J.: On existence and scattering theory for the Klein-Gordon-Schrödinger system in an infinite L2-norm setting, Ann. Mat. Pura Appl. https://doi.org/10.1007/s10231-013-0398-7 (2014)

  8. Cohen, D., Hairer, E., Lubich, C.H.: Modulated Fourier expansions of highly oscillatory differential equations. Found. Comput. Math. 3, 327–345 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hairer, E., Lubich, C.H., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Hioe, F.T.: Periodic solitary waves for two coupled nonlinear Klein-Gordon-Schrödinger equations. J. Phys. A Math. Gen. 36, 7307–7330 (2003)

    Article  MATH  Google Scholar 

  11. Added, H., Added, S.: Equations of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation. J. Funct. Anal. 79, 183–210 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yukawa, H.: On the interaction of elementary particles, I. Proc. Phys. Math. Soc. Jpn. 17, 48–57 (1935)

    MATH  Google Scholar 

  13. Fukuda, I., Tsutsumi, M.: On the Yukawa-coupled Klein-Gordon-Schrödinger equations in three space dimensions. Proc. Jpn. Acad. 51, 402–405 (1975)

    MATH  Google Scholar 

  14. Fukuda, I., Tsutsumi, M.: On coupled Klein-Gordon-Schrödinger equations II. J. Math. Anal. Appl. 66, 358–378 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fukuda, I., Tsutsumi, M.: On coupled Klein-Gordon-Schrödinger equations III. Math. Jpn. 24, 307–321 (1979)

    MATH  Google Scholar 

  16. Baillon, J.B., Chadam, J.M.: The Cauchy problem for the coupled Schrödinger-Klein-Gordon equations. North-Holland Math. Stud. 30, 37–44 (1978)

    Article  MATH  Google Scholar 

  17. Dixon, J.M., Tuszynski, J.A., Clarkson, P.J.: From nonlinearity to coherence: universal features of nonlinear behavior in many-body physics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  18. Hong, J., Jiang, S., Li, C.: Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations. J. Comput. Phys. 228, 3517–3532 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shen, J., Tang, T.: Spectral and high-order methods with applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  20. Lu, K.N., Wang, B.X.: Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains. J. Differ. Equ. 170, 281–316 (2001)

    Article  MATH  Google Scholar 

  21. Zhang, L.M.: Convergence of a conservative difference scheme for a class of Klein-Gordon- Schrödinger equations in one space dimension. Appl. Math. Comput. 163, 343–355 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Kong, L., Chen, M., Yin, X.: A novel kind of efficient symplectic scheme for Klein-Gordon-Schrödinger equation. Appl. Numer. Math. 135, 481–496 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, M.L., Zhou, Y.B.: The periodic wave solutions for the Klein-Gordon-Schrödinger equations. Phys. Lett. A. 318, 84–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hayashi, N., von Wahl, W.: On the global strong solutions of coupled Klein-Gordon-Schrödinger equations. J. Math. Soc. Jpn. 39, 489–497 (1987)

    Article  MATH  Google Scholar 

  26. Masmoudi, N., Nakanishi, K.: From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation. J. Hyperbol. Differ. Equ. 2, 975–1008 (2005)

    Article  MATH  Google Scholar 

  27. Masmoudi, N., Nakanishi, K.: From nonlinear Klein-Gordon equation to a system of coupled nonlinear Schrödinger equations. Math. Ann. 324, 359–389 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chartier, P.H., Crouseilles, N., Lemou, M., Méhats, F.: Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations. Numer. Math. 129, 211–250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Q.: Theoretical issue of controlling nucleus in Klein-Gordon-Schrödinger dynamics with perturbation in control field. Appl. Math. Comput. 206, 276–289 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Shi, Q.H., Li, W.T., Wang, S.: Wellposedness in energy space for the nonlinear Klein-Gordon- Schrödinger system. Appl. Math. Comput. 251, 55–64 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Shi, Q.H., Wang, S., Li, Y.: Existence and uniqueness of energy solution to Klein-Gordon-Schrödinger equations. J. Differ. Equ. 252, 168–180 (2012)

    Article  MATH  Google Scholar 

  32. Baumstark, S., Faou, E., Schratz, K.: Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to classical splitting schemes in the NLS splitting. Math. Comput. 87, 1227–1254 (2018)

    Article  MATH  Google Scholar 

  33. Baumstark, S., Kokkala, G., Schratz, K.: Asymptotic consistent exponential-type integrators for Klein-Gordon-Schrödinger systems from relativistic OT non-relativistic regimes. Electron. T. Numer. Ana. 48, 63–80 (2018)

    MATH  Google Scholar 

  34. Machihara, S., Nakanishi, K., Ozawa, T.: Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations. Math. Ann. 322, 603–621 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Missaoui, S., Zahrouni, E.: Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in R2. Commun. Pure. Appl. Anal. 14, 695–716 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ray, S.S.: An application of the modified decomposition method for the solution of the coupled Klein-Gorodn-Schrödinger equation. Commun. Nonlinear. Sci. 13, 1311–1317 (2008)

    Article  MATH  Google Scholar 

  37. Wang, T.C.: Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrödinger equation. J. Math. Anal. Appl. 412, 155–167 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ozawa, T., Tsutsumi, Y.: Asymptotic behaviour of solutions for the coupled Klein-Gordon-Schrödinger equations. Adv. Stud. Pure Math. 23, 295–305 (1994)

    Article  MATH  Google Scholar 

  39. Wang, T., Zhao, X., Jiang, J.: Unconditional and optimal H2-error estimates of two linear and conservative finit difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions. Adv. Comput. Math. https://doi.org/10.1007/s10444-017-9557-5

  40. Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A Math. Gen. 39, 5495–5507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Petviashvili, V., Pokhotelov, O.: Solitary waves in plasmas and in the atmosphere. Gordon and Breach, Philadelphia (1992)

    MATH  Google Scholar 

  42. Bao, W., Zhao, X.: Comparison of numerical methods for the nonliear Klein-Gordon equation in the nonrelativistic limit regime. J. Comput. Phys. 398, 108886 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Bao, W., Yang, L.: Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations. J. Comput. Phys. 225, 1863–1893 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Bao, W., Dong, X.: Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  46. Bao, W., Zhao, X.: A uniformly accurate(UA) multiscale time integrator Fourier pseudospectral method for the Klein-Gordon-Schrödinger equations in the nonrelativistic limit regime. Numer. Math. https://doi.org/10.1007/s00211-016-0818-x

  47. Bao, W., Dong, X., Wang, S.: Singular limits of Klein-Gordon-Schrödinger equations to Schrödinger-Yukawa equations. Multiscale. Model. Sim. 8, 1742–1769 (2010)

    Article  MATH  Google Scholar 

  48. Bao, W., Su, C.: Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinet. Relat. Mod. 11, 1037–1062 (2018)

    Article  MATH  Google Scholar 

  49. Dong, X., Xu, Z, Zhao, X.: On time-splitting pseudospectral discretization for nonlinear Klein-Gordon equation in nonrelativistic limit regime. Commun. Comput. Phys. 16, 440–466 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xiang, X.M.: Spectral method for solving the system of equations of Schrödinger-Klein-Gordon field. J. Comput. Appl. Math. 21, 161–171 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tang, X.Y., Ding, W.: The general Klein-Gordon-Schrödinger system: modulational instability and exact solutions. Phys. Scripta. 77, 015004 (2008)

    Article  MATH  Google Scholar 

  52. Li, Y., Guo, B.: Asymptotic smoothing effect of solutions to weakly dissiptive Klein-Gordon-Schrödinger equations. J. Math. Annl. Appl. 282, 256–265 (2003)

    Article  MATH  Google Scholar 

  53. Cai, Y., Wang, Y.: Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 57, 1602–1624 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Cai, Y., Zhou, X.: Uniformly accurate nested Picard iterative integrators for the Klein-Gordon equation in the nonrelativistic regime. J. Sci. Comput. 92, 1–28 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang, Y.: On nested Picard iterative integrators for highly oscillatory second-order differential equations. Numer. Algor. 91, 1627–1651 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lu, Y., Zhang, Z: Long time behavior of the quadratic Klein-Gordon equation in the nonrelativistic limit regime. arXiv:1412.2787

  57. Wang, Y.P., Xia, D.F.: Generalized solitary wave solutions for the Klein-Gordon-Schrödinger equations. Comput. Math. Appl. 58, 2300–2306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewer for the valuable comments and suggestions which improved the quality of the paper.

Funding

This research was supported by the NSFC (National Nature Science Foundation of China) grant 12171041 (Y. Cai).

Author information

Authors and Affiliations

Authors

Contributions

Yongyong Cai and Xuanxuan Zhou wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xuanxuan Zhou.

Ethics declarations

Ethics approval

The authors agree that this manuscript has followed the rules of ethics presented in the journal’s Ethical Guidelines for Journal Publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Details of the third-order NPI method

Appendix A: Details of the third-order NPI method

Here, we shall give the details of programming by using MATLAB R2012a. At first, let

$$ \begin{array}{@{}rcl@{}} \psi_{\psi}^{n+1}&=&\psi_{\psi}^{n,3}:=e^{i{\Delta} \tau}\psi^{n}+\delta_{\psi}^{n,1}(\tau)+\delta_{\psi}^{n,2}(\tau)+\delta_{\psi}^{n,3}(\tau),\\ \phi_{\pm}^{n+1}&=&\phi_{\pm}^{n,3}:=e^{\mp i\mathcal{D}_{\varepsilon} \tau}\phi_{\pm}^{n}+\delta_{\pm}^{n,1}(\tau)+\delta_{\pm}^{n,2}(\tau)+\delta_{\pm}^{n,3}(\tau), \end{array} $$

can be stated as below by specifying \(\delta _{\psi }^{n,3},\delta _{\pm }^{n,3}\), i.e. evaluating (2.22) for k = 3,

$$ \begin{array}{@{}rcl@{}} \delta_{\psi}^{n,3}&=&\sum\limits_{\pm}\bigg(\sum\limits_{k=0}^{2}p_{3,k,\pm}(s)\mathcal{F}^{n}_{3,k,\pm}+ \sum\limits_{k=5}^{6}p_{3,k,\pm}(s)\mathcal{F}^{n}_{3,k,\pm}+ \sum\limits_{k=0}^{3}p_{3,3,k,\pm}(s)\mathcal{F}^{n}_{3,3,k,\pm}\\ &&+\sum\limits_{k=0}^{1}p_{3,7,k,\pm}(s)\mathcal{F}^{n}_{3,7,k,\pm}+ \sum\limits_{k=0}^{5}p_{3,8,k,\pm}(s)\mathcal{F}^{n}_{3,8,k,\pm}\\&&+ \sum\limits_{k=0}^{4}\sum\limits_{\sigma=\pm}p_{3,k,\sigma,\pm}(s)\mathcal{F}^{n}_{3,k,\sigma,\pm}\bigg),\\ \delta_{\pm}^{n,3}&=&\sum\limits_{k=0}^{2}q_{3,k,\pm}(s)\mathcal{G}^{n}_{3,k,\pm}+ \sum\limits_{k=3}^{4}\sum\limits_{\sigma=\pm}q_{3,k,\sigma,\pm}(s)\mathcal{G}^{n}_{3,k,\sigma,\pm}\\ &&+\sum\limits_{k1=5}^{6}\sum\limits_{k2=0}^{4}\sum\limits_{\sigma=\pm}q_{3,k1,k2,\sigma,\pm}(s)\mathcal{G}^{n}_{3,k1,k2,\sigma,\pm}\\ &&+\sum\limits_{k=7}^{8}\sum\limits_{\sigma=\pm}q_{3,k,\sigma,\pm}(s)\mathcal{G}^{n}_{3,k,\sigma,\pm}+ \sum\limits_{\sigma_{1}=\pm}\sum\limits_{\sigma_{2}=\pm}q_{3,9,\sigma_{1},\sigma_{2},\pm}(s)\mathcal{G}^{n}_{3,9,\sigma_{1},\sigma_{2},\pm}, \end{array} $$

and the rest nonlinear terms are described below

$$ \begin{array}{@{}rcl@{}} \mathcal{F}^{n}_{3,0,\pm}&=&\pm i(\mathcal{B}_{2}\psi^{n})\mathcal{B}_{1}\phi^{n}_{\mp} +\frac{i}{2}\phi^{n}_{\mp}\mathcal{B}_{2}^{2}\psi^{n} +\frac{i}{2}\psi^{n}\mathcal{B}_{1}^{2}\phi_{\mp}^{n},\\ \mathcal{F}^{n}_{3,1,\pm}&=&\frac{i}{2}\mathcal{B}_{2}^{2}(\psi^{n}\phi^{n}_{\mp}), \mathcal{F}^{n}_{3,2,\pm}=i\mathcal{B}_{2}((\mathcal{B}_{2}\psi^{n})\phi_{\mp}^{n} \pm \psi^{n}\mathcal{B}_{1}\phi^{n}_{\mp}),\\ \mathcal{F}^{n}_{3,3,0,\pm}&=&i\mathcal{B}_{2}(\mathcal{F}^{n}_{1,+}\phi^{n}_{\mp}), \mathcal{F}^{n}_{3,3,1,\pm}=i\mathcal{B}_{2}(\mathcal{F}^{n}_{1,-}\phi^{n}_{\mp}),\\ \mathcal{F}^{n}_{3,5,\pm}&=&i\mathcal{B}_{2}(\mathcal{G}^{n}_{1,\mp}\psi^{n}), \mathcal{F}^{n}_{3,6,\pm}=i(\mathcal{B}_{2}\psi^{n})\mathcal{G}^{n}_{1,\mp},\\ \mathcal{F}^{n}_{3,3,2,\pm}&=&\pm i\mathcal{F}^{n}_{1,+}\mathcal{B}_{1}\phi^{n}_{\mp}, \mathcal{F}^{n}_{3,3,3 ,\pm}=\pm i\mathcal{F}^{n}_{1,-}\mathcal{B}_{1}\phi^{n}_{\mp}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} \mathcal{F}^{n}_{3,k,\sigma,\pm}&=&i\mathcal{F}^{n}_{2,k,-\sigma}\phi_{\mp}^{n}, \mathcal{F}^{n}_{3,7,0,\pm}=i\mathcal{F}^{n}_{1,+}\mathcal{G}_{1,\mp}^{n},\\ \mathcal{F}^{n}_{3,7,1,\pm}&=&i\mathcal{F}^{n}_{1,-}\mathcal{G}_{1,\mp}^{n},\ \mathcal{F}^{n}_{3,8,k,\pm}=i\psi^{n}(\pm\mathcal{G}_{2,k}^{n}),\\ \mathcal{G}^{n}_{3,0,\pm}&=&\pm\mathcal{A}\left( \frac{1}{2}\psi^{n}\overline{\mathcal{B}_{2}^{2}\psi^{n}}+ \frac{1}{2}\overline{\psi^{n}}\mathcal{B}_{2}^{2}\psi^{n}+ |\mathcal{B}_{2}\psi^{n}|^{2} \right),\\ \mathcal{G}^{n}_{3,1,\pm}&=&\pm\frac{1}{2}\mathcal{A}\mathcal{B}_{1}^{2}|\psi^{n}|^{2}, \mathcal{G}^{n}_{3,2,\pm}=-\mathcal{A}\mathcal{B}_{1}\left( \psi^{n}\overline{\mathcal{B}_{2}\psi^{n}}+ \overline{\psi^{n}}\mathcal{B}_{2}\psi^{n} \right),\\ \mathcal{G}^{n}_{3,3,\sigma,\pm}&=&-\mathcal{A}\mathcal{B}_{1}(\overline{\psi^{n}}\mathcal{F}_{1,-\sigma}), \mathcal{G}^{n}_{3,4,\sigma,\pm}=-\mathcal{A}\mathcal{B}_{1}(\psi^{n}\overline{\mathcal{F}_{1,-\sigma}}),\\ \mathcal{G}^{n}_{3,5,k,\sigma,\pm}&=&\pm\mathcal{A}(\overline{\psi^{n}}\mathcal{F}_{2,k,-\sigma}), \mathcal{G}^{n}_{3,6,k,\sigma,\pm}=\pm\mathcal{A}(\psi^{n}\overline{\mathcal{F}_{2,k,-\sigma}}),\\ \mathcal{G}^{n}_{3,7,\sigma,\pm}&=&\pm\mathcal{A}(\mathcal{F}_{1,-\sigma}\overline{\mathcal{B}_{2}\psi^{n}}), \mathcal{G}^{n}_{3,8,\sigma,\pm}=\pm\mathcal{A}(\overline{\mathcal{F}_{1,-\sigma}}\mathcal{B}_{2}\psi^{n}),\\ \mathcal{G}^{n}_{3,9,\sigma_{1},\sigma_{2},\pm}&=&\pm\mathcal{A}(\mathcal{F}_{1,-\sigma_{1}}\overline{\mathcal{F}_{1,-\sigma_{2}}}), \end{array} $$

Finally, the coefficients are given by

$$ \begin{array}{@{}rcl@{}} p_{3,0,\pm}(s)&=&{{\int}_{0}^{s}}e^{\pm iw/\varepsilon^{2}}w^{2} dw, p_{3,1,\pm}(s)={{\int}_{0}^{s}}e^{\pm iw/\varepsilon^{2}}(s-w)^{2} dw,\\ p_{3,2,\pm}(s)&=&{{\int}_{0}^{s}}e^{\pm iw/\varepsilon^{2}}w(s-w) dw,\\ p_{3,3,k,\pm}(s)&=&{{\int}_{0}^{s}}e^{\pm iw/\varepsilon^{2}}p_{1,k}(w)(s-w) dw,\\ p_{3,3,k+2,\pm}(s)&=&{{\int}_{0}^{s}}e^{\pm iw/\varepsilon^{2}}p_{1,k}(w)w dw, k=0,1,\\ p_{3,5,\pm}(s)&=&{{\int}_{0}^{s}}q_{1,\pm}(w)(s-w) dw, p_{3,6,\pm}(s)={{\int}_{0}^{s}}q_{1,\pm}(w)w dw,\\ p_{3,7,k,\pm}(s)&=&{{\int}_{0}^{s}}p_{1,k}(w)q_{1,\pm}(w)dw, k=0,1,\\ p_{3,k,\sigma,\pm}&=&{{\int}_{0}^{s}}e^{\pm iw/\varepsilon^{2}}p_{2,k,\sigma}(w)dw,k=0,1,\dots,4,\sigma=\pm,\\ p_{3,8,k,\pm}&=&{{\int}_{0}^{s}}q_{2,\pm,k}(w)dw,k=0,1,\dots,5,\\ q_{3,0,\pm}(s)&=&{{\int}_{0}^{s}}e^{\mp i(s-w)/\varepsilon^{2}}w^{2} dw, q_{3,1,\pm}(s)={{\int}_{0}^{s}}e^{\mp i(s-w)/\varepsilon^{2}}(s-w)^{2} dw,\\ q_{3,2,\pm}(s)&=&{{\int}_{0}^{s}}e^{\mp i(s-w)/\varepsilon^{2}}w(s-w) dw,\\ q_{3,3,\sigma,\pm}(s)&=&{{\int}_{0}^{s}}e^{\mp i(s-w)/\varepsilon^{2}}p_{1,\sigma}(w)(s-w) dw,\\ q_{3,4,\sigma,\pm}(s)&=&{{\int}_{0}^{s}}e^{\mp i(s-w)/\varepsilon^{2}}\overline{p_{1,\sigma}}(w)(s-w) dw, \end{array} $$
$$ \begin{array}{@{}rcl@{}} q_{3,5,k,\sigma,\pm}(s)&=&{{\int}_{0}^{s}}e^{\mp i(s-w)/\varepsilon^{2}}p_{2,k,\sigma}(w) dw, q_{3,6,k,\sigma,\pm}(s)={{\int}_{0}^{s}}e^{\mp i(s-w)/\varepsilon^{2}}\overline{p_{2,k,\sigma}}(w) dw,\\ q_{3,7,\sigma,\pm}(s)&=&{{\int}_{0}^{s}}e^{\mp i(s-w)/\varepsilon^{2}}p_{1,\sigma}(w)w dw, q_{3,8,\sigma,\pm}(s)={{\int}_{0}^{s}}e^{\mp i(s-w)/\varepsilon^{2}}\overline{p_{1,\sigma}}(w)w dw,\\ q_{3,9,\sigma_{1},\sigma_{2},\pm}(s)&=&{{\int}_{0}^{s}}e^{\mp i(s-w)/\varepsilon^{2}}p_{1,\sigma_{1}}(w)\overline{p_{1,\sigma_{2}}}(w) dw. \end{array} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Zhou, X. Uniformly accurate nested Picard iterative integrators for the Klein-Gordon-Schrödinger equation in the nonrelativistic regime. Numer Algor 94, 371–396 (2023). https://doi.org/10.1007/s11075-023-01505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01505-0

Keywords

Mathematics Subject Classification (2010)

Navigation