Skip to main content
Log in

Wave-heat coupling in one-dimensional unbounded domains: artificial boundary conditions and an optimized Schwarz method

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper deals with the coupling between one-dimensional heat and wave equations in unbounded subdomains, as a simplified prototype of fluid-structure interaction problems. First we apply appropriate artificial boundary conditions that yield an equivalent problem, but with bounded subdomains, and we carry out the stability analysis for this coupled problem in truncated domains. Then we devise an optimized Schwarz-in-time (or Schwarz Waveform Relaxation) method for the numerical solving of the coupled equations. Particular emphasis is made on the design of optimized transmission conditions. Notably, for this setting, the optimal transmission conditions can be expressed analytically in a very simple manner. This result is illustrated by some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York-London (1975)

    Google Scholar 

  2. Arnold, A.: Numerically absorbing boundary conditions for quantum evolution equations. VLSI Des. 6(1-4), 313–319 (1998)

    Article  Google Scholar 

  3. Astorino, M, Chouly, F., Fernández, M.A.: Robin based semi-implicit coupling in fluid-structure interaction: stability analysis and numerics. SIAM J. Sci. Comput. 31(6), 4041–4065 (2009/10)

    Article  MathSciNet  Google Scholar 

  4. Astorino, M., Chouly, F., Quarteroni. A: A time-parallel framework for coupling finite element and lattice Boltzmann methods. Appl. Math. Res. Express. AMRX (1), 24–67 (2016)

  5. Badia, S., Nobile, F., Vergara, C.: Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227(14), 7027–7051 (2008)

    Article  MathSciNet  Google Scholar 

  6. Badia, S., Nobile, F., Vergara, C.: Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems. Comput. Methods Appl. Mech Eng. 198(33-36), 2768–2784 (2009)

    Article  MathSciNet  Google Scholar 

  7. Baskakov, V.A., Popov, A.V.: Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion 14(2), 123–128 (1991)

    Article  MathSciNet  Google Scholar 

  8. Abdallah, N.B., Méhats, F., Pinaud, O.: On an open transient Schrödinger-Poisson system. Math. Models Methods Appl. Sci. 15(5), 667–688 (2005)

    Article  MathSciNet  Google Scholar 

  9. Burman, E., Durst, R., Fernández, M.A., Guzmán, J.: Fully discrete loosely coupled Robin-Robin scheme for incompressible fluid-structure interaction:, stability and error analysis. arXiv:2007.03846 (2020)

  10. Burman, E., Fernández, M.A.: Explicit strategies for incompressible fluid-structure interaction problems: Nitsche type mortaring versus Robin-Robin coupling. Int. J. Numer. Methods Eng. 97(10), 739–758 (2014)

    Article  MathSciNet  Google Scholar 

  11. Cao, S., Main, A., Wang, K.G.: Robin-Neumann transmission conditions for fluid-structure coupling: embedded boundary implementation and parameter analysis. Int. J. Numer. Methods Eng. 115(5), 578–603 (2018)

    Article  MathSciNet  Google Scholar 

  12. Causin, P., Gerbeau, J.-F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng. 194(42-44), 4506–4527 (2005)

    Article  MathSciNet  Google Scholar 

  13. Chouly, F., Fernández, M.A.: An enhanced parareal algorithm for partitioned parabolic-hyperbolic coupling. AIP Conf. Proc. 1168(1), 1517–1520 (2009)

    Article  Google Scholar 

  14. Degroote, J.: On the similarity between Dirichlet-Neumann with interface artificial compressibility and Robin-Neumann schemes for the solution of fluid-structure interaction problems. J. Comput. Phys. 230(17), 6399–6403 (2011)

    Article  MathSciNet  Google Scholar 

  15. Discacciati, M., Gerardo-Giorda, L.: Optimized Schwarz methods for the Stokes-Darcy coupling. IMA J. Numer. Anal. 38(4), 1959–1983 (2018)

    Article  MathSciNet  Google Scholar 

  16. Doetsch, G.: Anleitung Zum Praktischen Gebrauch der Laplace-Transformation und der Z-Transformation, 4th edn. R Oldenbourg Verlag, Munich (1981)

    MATH  Google Scholar 

  17. Errera, M.-P., Duchaine, F.: Comparative study of coupling coefficients in Dirichlet-Robin procedure for fluid-structure aerothermal simulations. J. Comput. Phys. 312, 218–234 (2016)

    Article  MathSciNet  Google Scholar 

  18. Farhat, C., Cortial, J., Dastillung, C., Bavestrello, H.: Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses. Int. J. Numer. Methods Eng. 67(5), 697–724 (2006)

    Article  MathSciNet  Google Scholar 

  19. Fernández, M.A.: Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit. SeMA J. (55), 59–108 (2011)

  20. Fernández, M.A., Formaggia, L., Gerbeau, J.-F., Quarteroni, A.: The derivative of the equations for fluids and structure. In: Cardiovascular Mathematics, volume 1 of MS&A. Model. Simul. Appl., pp 77–121. Springer, Italia, Milan (2009)

  21. Fernández, M.A., Gerbeau, J.F.: Algorithms for fluid-structure interaction problems. In: Cardiovascular Mathematics, volume 1 of MS&A. Model. Simul. Appl., pp 307–346. Springer, Italia, Milan (2009)

  22. Fernández, M.A., Landajuela, M., Mullaert, J., Vidrascu, M.: Robin-Neumann schemes for incompressible fluid-structure interaction. In: Domain Decomposition Methods in Science and Engineering XXII, volume 104 of Lect. Notes Comput. Sci. Eng., pp 65–76. Springer, Cham (2016)

  23. Fernández, M.A., Mullaert, J., Marina, V.: Explicit Robin-Neumann schemes for the coupling of incompressible fluids with thin-walled structures. Comput. Methods Appl. Mech. Eng. 267, 566–593 (2013)

    Article  MathSciNet  Google Scholar 

  24. Fernández, M.A., Mullaert, J., Vidrascu, M.: Generalized Robin-Neumann explicit coupling schemes for incompressible fluid-structure interaction: stability analysis and numerics. Int. J. Numer. Methods Eng. 101(3), 199–229 (2015)

    Article  MathSciNet  Google Scholar 

  25. Forti, D., Quarteroni, A., Simone, D.: A parallel algorithm for the solution of large-scale nonconforming fluid-structure interaction problems in hemodynamics. J. Comput. Math. 35(3), 363–380 (2017)

    Article  MathSciNet  Google Scholar 

  26. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)

    Article  MathSciNet  Google Scholar 

  27. Gander, M.J.: On the influence of geometry on optimized Schwarz methods. SeMA J. (53), 71–78 (2011)

  28. Gander, M.J., Halpern, L.: Méthodes de relaxation d’ondes (SWR) pour l’équation de la chaleur en dimension 1. C. R Math. Acad. Sci. Paris 336(6), 519–524 (2003)

    Article  MathSciNet  Google Scholar 

  29. Gander, M.J., Halpern, L., Nataf, F.: Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer Anal. 41(5), 1643–1681 (2003)

    Article  MathSciNet  Google Scholar 

  30. Gander, M.J., Jiang, Y.-L., Li, R.-J.: Parareal Schwarz waveform relaxation methods. In: Domain Decomposition Methods in Science and Engineering XX, vol. 91 of Lect. Notes Comput. Sci. Eng., pp 451–458. Springer, Heidelberg (2013)

  31. Gander, M.J., Petcu, M.: Analysis of a Krylov subspace enhanced parareal algorithm for linear problems. In: Paris-Sud Working Group on Modelling and Scientific Computing 2007–2008, vol. 25 of ESAIM Proc. EDP Sci., Les Ulis, pp 114–129 (2008)

  32. Gander, M.J., Vandewalle, S.G.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29, 556–578 (2007)

    Article  MathSciNet  Google Scholar 

  33. Gander, M.J., Vanzan, T.: Heterogeneous optimized Schwarz methods for coupling Helmholtz and Laplace equations. In: Domain decomposition methods in science and engineering XXIV, vol. 125 of Lect. Notes Comput. Sci. Eng., pp 311–320. Springer, Cham (2018)

  34. Gander, M.J., Vanzan, T.: Heterogeneous optimized Schwarz methods for second order elliptic PDEs. SIAM J. Sci Comput. 41(4), A2329–A2354 (2019)

    Article  MathSciNet  Google Scholar 

  35. Gerardo-Giorda, L., Nobile, F., Vergara, C.: Analysis and optimization of Robin-Robin partitioned procedures in fluid-structure interaction problems. SIAM J. Numer. Anal. 48(6), 2091–2116 (2010)

    Article  MathSciNet  Google Scholar 

  36. Gigante, G., Sambataro, G., Vergara, C.: Optimized Schwarz methods for spherical interfaces with application to fluid-structure interaction. SIAM J. Sci. Comput. 42(2), A751–A770 (2020)

    Article  MathSciNet  Google Scholar 

  37. Gigante, G., Vergara, C.: Optimized Schwarz method for the fluid-structure interaction with cylindrical interfaces. In: Domain decomposition methods in science and engineering XXII, vol. 104 of Lect. Notes Comput. Sci. Eng., pp 521–529. Springer, Cham (2016)

  38. Gripenberg, G., Londen, S.-O., Staffans, O.J.: Volterra Integral and Functional Equations, vol. 34 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  39. Halpern, L., Japhet, C., Szeftel, J.: Discontinuous Galerkin and nonconforming in time optimized Schwarz waveform relaxation. In: Domain Decomposition Methods in Science and Engineering XIX, vol. 78 of Lect. Notes Comput. Sci. Eng., pp 133–140. Springer, Heidelberg (2011)

  40. Han, H., Huang, Z.: A class of artificial boundary conditions for heat equation in unbounded domains. Comput. Math Appl. 43(6-7), 889–900 (2002)

    Article  MathSciNet  Google Scholar 

  41. Lions, J.-L., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps “pararéel”. C. R. Acad. Sci. Paris Sér. I Math. 332(7), 661–668 (2001)

    Article  MathSciNet  Google Scholar 

  42. Lions, J.-L.: Problèmes aux Limites non homogènes applications. Vol. 1. Travaux et Recherches Mathématiques, vol. 17. Dunod, Paris (1968)

    Google Scholar 

  43. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  44. Maday, Y.: Analysis of coupled models for fluid-structure interaction of internal flows. In: Cardiovascular Mathematics, vol. 1 of MS&A. Model. Simul. Appl., pp 279–306. Springer, Italia, Milan (2009)

  45. Papadakis, J.S.: Impedance formulation of the bottom boundary condition for the parabolic equation model in underwater acoustics. NORDA Parabolic Equation Workshop, NORDA Tech. Note, 143, 01 (1982)

  46. Podlubny, I.: Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering. Academic Press Inc., San Diego, CA (1999)

    Google Scholar 

  47. Richter, T., Wick, T.: On time discretizations of fluid-structure interactions. In: Multiple Shooting and Time Domain Decomposition Methods, vol. 9 of Contrib. Math. Comput. Sci., pp 377–400. Springer, Cham (2015)

  48. Seboldt, A., Bukač, M.: A non-iterative domain decomposition method for the interaction between a fluid and a thick structure. arXiv:2007.00781 (2020)

  49. Xu, Y.: The influence of domain truncation on the performance of optimized Schwarz methods. Electron. Trans. Numer. Anal. 49, 182–209 (2018)

    Article  MathSciNet  Google Scholar 

  50. Xu, Z., Zuazua, E.: Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch. Ration. Mech. Anal. 184(1), 49–120 (2007)

    Article  MathSciNet  Google Scholar 

  51. Zheng, C.: Approximation, stability and fast evaluation of exact artificial boundary condition for the one-dimensional heat equation. J. Comput. Math. 25 (6), 730–745 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The two authors thank the two anonymous referees for their comments that allowed to improve the manuscript. They also thank Miguel A. Fernandez, Yvon Maday, Martin Gander, Véronique Martin, Christophe Besse and Xavier Antoine for stimulating discussions and helpful comments. This work was granted for access to the resources of the Mesocentre of Franche-Comté.

Funding

F.C. and P.K.’s work is partially supported by Université de Franche-Comté and Région Bourgogne Franche-Comté. F.C.’s work is partially supported by the I-Site BFC project NAANoD and the EIPHI Graduate School (contract ANR-17-EURE-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Chouly.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouly, F., Klein, P. Wave-heat coupling in one-dimensional unbounded domains: artificial boundary conditions and an optimized Schwarz method. Numer Algor 90, 631–668 (2022). https://doi.org/10.1007/s11075-021-01201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01201-x

Keywords

Navigation