Skip to main content
Log in

Numerical solutions to large-scale differential Lyapunov matrix equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the present paper, we consider large-scale differential Lyapunov matrix equations having a low rank constant term. We present two new approaches for the numerical resolution of such differential matrix equations. The first approach is based on the integral expression of the exact solution and an approximation method for the computation of the exponential of a matrix times a block of vectors. In the second approach, we first project the initial problem onto a block (or extended block) Krylov subspace and get a low-dimensional differential Lyapunov matrix equation. The latter differential matrix problem is then solved by the Backward Differentiation Formula method (BDF) and the obtained solution is used to build a low rank approximate solution of the original problem. The process is being repeated, increasing the dimension of the projection space until some prescribed accuracy is achieved. We give some new theoretical results and present numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix riccati equations in control and systems theory. In: Systems & Control Foundations & Applications. Birkhauser (2003)

    Chapter  Google Scholar 

  2. Anderson, B.D.O., Moore, J.B.: Linear Optimal Control. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  3. Bartels, R.H., Stewart, G.W.: Algorithm 432: solution of the matrix equation AX+ XB =c. Circ. Syst. Signal Proc. 13, 820–826 (1972)

    MATH  Google Scholar 

  4. Brezinski, C.: Computational Aspects of Linear Control. Kluwer, Dordrecht (2002)

    Book  Google Scholar 

  5. Corless, M.J., Frazho, A.E.: Linear Systems and Control—An Operator Perspective. Pure and Applied Mathematics. Marcel Dekker, New York-Basel (2003)

    Book  Google Scholar 

  6. Datta, B.N.: Numerical Methods for Linear Control Systems Design and Analysis. Elsevier Academic Press, Amsterdam (2003)

    Google Scholar 

  7. Druskin, V., Knizhnerman, L.: Extended Krylov subspaces: approximation of the matrix square root and related functions. SIAM J. Matrix Anal. Appl. 19(3), 755–771 (1998)

    Article  MathSciNet  Google Scholar 

  8. El Guennouni, A., Jbilou, K., Riquet, A.J.: Block Krylov subspace methods for solving large Sylvester equations. Numer. Alg. 29, 75–96 (2002)

    Article  MathSciNet  Google Scholar 

  9. Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Statist. Comput. 13, 1236–1264 (1992)

    Article  MathSciNet  Google Scholar 

  10. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L-infinity error bounds. Int. J. Control. 39, 1115–1193 (1984)

    Article  Google Scholar 

  11. Golub, G.H., Nash, S., Van Loan, C.: A Hessenberg Schur method for the problem A X + X B = C. IEEE Trans. Automat. Contr. 24, 909–913 (1979)

    Article  MathSciNet  Google Scholar 

  12. Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 26(4), 1179–1193 (2005)

    Article  MathSciNet  Google Scholar 

  13. Higham, N.J., Al-Mohy, A.: A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl. 31(3), 970–989 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Hu, D.Y., Reichel, L.: Krylov-subspace methods for the Sylvester equation. Lin. Alg. Appl. 172, 283–313 (1992)

    Article  MathSciNet  Google Scholar 

  15. Jaimoukha, I.M., Kasenally, E.M.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Numer. Anal. 31, 227–251 (1994)

    Article  MathSciNet  Google Scholar 

  16. Jbilou, K.: Low-rank approximate solution to large Sylvester matrix equations. App. Math. Comput. 177, 365–376 (2006)

    Article  MathSciNet  Google Scholar 

  17. Jbilou, K., Riquet, A.J.: Projection methods for large Lyapunov matrix equations. Lin. Alg. Appl. 415, 344–358 (2006)

    Article  MathSciNet  Google Scholar 

  18. Moler, C.B., Van Loan, C.F.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20, 801836 (1978). Reprinted and updated as Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later, SIAM Review 45(2003), 3–49

    Article  MathSciNet  Google Scholar 

  19. Moore, B.C.: Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans. Autom. Control AC-26, 17–32 (1981)

    Article  MathSciNet  Google Scholar 

  20. Mullis, C.T., Roberts, R.A.: Synthesis of minimum roundoff noise fixed point digital filters. IEEE Trans. Circ. Syst. CAS-23(9), 551–562 (1996)

    Article  MathSciNet  Google Scholar 

  21. Saad, Y.: Numerical solution of large Lyapunov equations, in Signal Processing, Scattering, Operator Theory and Numerical Methods. In: Kaashoek, M.A., van Schuppen, J.H., Ran, A.C. (eds.) Proceedings of the international symposium MTNS-89, vol. 3, pp 503–511. Birkhauser, Boston (1990)

  22. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)

    Article  MathSciNet  Google Scholar 

  23. Sandberg, H.: Linear Time-Varying Systems: Modeling and Reduction. Ph.D. thesis, Department of Automatic Control, Lund Institute of Technology, Lund (2002)

    Google Scholar 

  24. Shokoohi, S., Silverman, L., Van Dooren, P.: Linear time-variable systems: balancing and model reduction. IEEE Trans. Autom. Control 28, 810–822 (1983)

    Article  MathSciNet  Google Scholar 

  25. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comp. 29(3), 1268–1288 (2007)

    Article  MathSciNet  Google Scholar 

  26. Verriest, E.I., Kailath, T.: On generalized balanced realizations. IEEE Trans. Autom. Control 28, 833–844 (1983)

    Article  MathSciNet  Google Scholar 

  27. van der Vorst, H.: Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for the valuable remarks and helpful suggestions he made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jbilou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hached, M., Jbilou, K. Numerical solutions to large-scale differential Lyapunov matrix equations. Numer Algor 79, 741–757 (2018). https://doi.org/10.1007/s11075-017-0458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0458-y

Keywords

Mathematics Subject Classification 2010

Navigation