Skip to main content
Log in

Adaptive spectral solution method for Fredholm integral equations of the second kind

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The purpose of this paper is to develop and analyze an adaptive collocation method for Fredholm integral equations of the second kind, even if the equation exhibits localized rapid variations, steep gradients, or steep front. The strategy of the adaptive procedure is to transform the given equation into an equivalent one with a sufficiently smooth behavior in order to ensure the convergence of the Legendre spectral collocation method without dividing the domain of the integral equation, as usual, into the sub intervals. Existence and uniqueness of solutions are discussed. Convergence rates and error estimates are given for the numerical scheme in both \(L^{\infty }\)-norm and \(L^{2}\)-norm. Finally, several numerical examples are provided to show that the proposed method is preferable to its classical predecessor and some other existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

No data were used to support this study.

References

  1. Love, E.R.: The electrostatic field of two equal circular co-axial conducting disks. Q. J. Mech. Appl. Math. 2(4), 428–451 (1949). https://doi.org/10.1093/qjmam/2.4.428

    Article  MathSciNet  MATH  Google Scholar 

  2. Farengo, R., Lee, Y.C., Guzdar, P.N.: An electromagnetic integral equation: application to microtearing modes. Phys. Fluids 26(12), 3515–3523 (1983). https://doi.org/10.1063/1.864112

    Article  MATH  Google Scholar 

  3. Jiang, S., Rokhlin, V.: Second kind integral equations for the classical potential theory on open surfaces ii. J. Comput. Phys. 195(1), 1–16 (2004). https://doi.org/10.1016/j.jcp.2003.10.001

    Article  MathSciNet  MATH  Google Scholar 

  4. Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25(3), 379–393 (1983). https://doi.org/10.1137/1025078

    Article  MathSciNet  MATH  Google Scholar 

  5. Adamiak, K.: Application of integral equations to solving inverse problems of stationary electromagnetic fields. Int. J. Numer. Meth. Eng. 21(12), 1447–1458 (1985). https://doi.org/10.1002/nme.1620210807

    Article  MathSciNet  MATH  Google Scholar 

  6. Kulish, V.V., Novozhilov, V.B.: Integral equation for the heat transfer with the moving boundary. J. Thermophys. Heat Transfer 17(04), 538–540 (2003). https://doi.org/10.2514/2.7653

    Article  Google Scholar 

  7. Mikhlin, S.: Integral equations and their applications to certain problems: in mechanics, mathematical physics and technology. International series of monographs in pure and applied mathematics, Macmillan (1964)

  8. Lima, P.M., Teodoro, M.F., Ford, N.J., Lumb, P.M.: Finite element solution of a linear mixed-type functional differential equation. Numer. Algorithms 55, 301–320 (2010). https://doi.org/10.1007/s11075-010-9412-y

    Article  MathSciNet  MATH  Google Scholar 

  9. Heinrich, S., Math, P.: The Monte Carlo complexity of Fredholm integral equations. Math. Comput. 60(201), 257–278 (1993). https://doi.org/10.2307/2153165

    Article  MathSciNet  MATH  Google Scholar 

  10. ZhiMin, H., ZaiZai, Y., JianRui, C.: Monte Carlo method for solving the Fredholm integral equations of the second kind. Transp. Theory Stat. Phys. 41(7), 513–528 (2012). https://doi.org/10.1080/00411450.2012.695317

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezinski, C., Redivo-Zaglia, M.: Extrapolation methods for the numerical solution of nonlinear Fredholm integral equations. J. Integral Equ. Appl. 31(1), 29–57 (2019). https://doi.org/10.1216/JIE-2019-31-1-29

    Article  MathSciNet  MATH  Google Scholar 

  12. El-gendi, S.E.: Chebyshev solution of differential, integral and integro-differential equations. The Comput. J 12 (1969). https://doi.org/10.1093/comjnl/12.3.282

  13. Okayama, T., Matsuo, T., Sugihara, M.: Improvement of a sinc-collocation method for Fredholm integral equations of the second kind. BIT Numer. Math. 51(2), 339–366 (2011). https://doi.org/10.1007/s10543-010-0289-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Rahmoune, A.: On the numerical solution of integral equations of the second kind over infinite intervals. J. Appl. Math. Comput. 66, 129–148 (2021). https://doi.org/10.1007/s12190-020-01428-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Rahmoune, A., Guechi, A.: Sinc-Nystrom methods for Fredholm integral equations of the second kind over infinite intervals. Appl. Numer. Math. 157, 579–589 (2020). https://doi.org/10.1016/j.apnum.2020.07.013

    Article  MathSciNet  MATH  Google Scholar 

  16. Benyoussef, S., Rahmoune, A.: Efficient spectral-collocation methods for a class of linear Fredholm integro-differential equations on the half-line. J. Comput. Appl. Math. 377, 112894 (2020). https://doi.org/10.1016/j.cam.2020.112894

    Article  MathSciNet  MATH  Google Scholar 

  17. Remili, W., Rahmoune, A.: Modified Legendre rational and exponential collocation methods for solving nonlinear Hammerstein integral equations on the semi-infinite domain. Int. J. Comput. Math. 99, 2018–2041 (2022). https://doi.org/10.1080/00207160.2022.2033236

    Article  MathSciNet  MATH  Google Scholar 

  18. Hamani, F., Rahmoune, A.: Solving nonlinear Volterra-Fredholm integral equations using an accurate spectral collocation method. Tatra Mt. Math. Publ. 80(3), 35–52 (2021). https://doi.org/10.2478/tmmp-2021-0030

    Article  MathSciNet  MATH  Google Scholar 

  19. Durmaz, M.E., Amirali, I., Mohapatra, J., Amiraliyev, G.M.: A second-order numerical approximation of a singularly perturbed nonlinear Fredholm integro-differential equation. Appl. Numer. Math. 191, 17–28 (2023). https://doi.org/10.1016/j.apnum.2023.05.008

    Article  MathSciNet  MATH  Google Scholar 

  20. Durmaz, M.E.: A numerical approach for singularly perturbed reaction diffusion type Volterra-Fredholm integro-differential equations. J App. Math. Comput. (2023). https://doi.org/10.1007/s12190-023-01895-3

  21. Mandal, B., Bhattacharya, S.: Numerical solution of some classes of integral equations using Bernstein polynomials. Appl. Math. Comput. 190(2), 1707–1716 (2007). https://doi.org/10.1016/j.amc.2007.02.058

    Article  MathSciNet  MATH  Google Scholar 

  22. Kumar, A.: An analytical solution to applied mathematics-related love’s equation using the Boubaker polynomials expansion scheme. J. Franklin Inst. 347(9), 1755–1761 (2010). https://doi.org/10.1016/j.jfranklin.2010.08.008

    Article  MathSciNet  MATH  Google Scholar 

  23. Milovanovic, G.V., Joksimovic, D.: Properties of Boubaker polynomials and an application to love’s integral equation. Appl. Math. Comput. 224(9), 74–87 (2013). https://doi.org/10.1016/j.amc.2013.08.055

    Article  MathSciNet  MATH  Google Scholar 

  24. Maleknejad, K., Nouri, K., Yousefi, M.: Discussion on convergence of Legendre polynomial for numerical solution of integral equations. Appl. Math. Comput. 193(2), 335–339 (2007). https://doi.org/10.1016/j.amc.2007.03.062

    Article  MathSciNet  MATH  Google Scholar 

  25. Eshkuvatov, Z.K., Kammuji, M., Taib, B.M., Long, N.M.A.N.: Effective approximation method for solving linear Fredholm-Volterra integral equations. Numer. Algebra Control Optim. 7(1), 77–88 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y.: Application of the Chebyshev polynomial in solving Fredholm integral equations. Math. Comput. Model. 50(3), 465–469 (2009). https://doi.org/10.1016/j.mcm.2008.10.007

    Article  MathSciNet  MATH  Google Scholar 

  27. Rahmoune, A.: Spectral collocation method for solving Fredholm integral equations on the half-line. Appl. Math. Comput. 219(17), 9254–9260 (2013). https://doi.org/10.1016/j.amc.2013.03.043

    Article  MathSciNet  MATH  Google Scholar 

  28. Rahmoune, A., Guechi, A.: A rational spectral collocation method for solving Fredholm integral equations on the whole line. Int. J. Comput. Sci. Math. 13, 32–41 (2021). https://doi.org/10.1504/IJCSM.2021.114184

    Article  MathSciNet  Google Scholar 

  29. Shen, J., Tang, T., Wang, L.-L.: Spectral methods. Analysis and Applications. Springer, Heidelberg, Algorithms (2011)

    Book  MATH  Google Scholar 

  30. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods: fundamentals in single domains, 1st edn. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  31. Szegő, G.: Orthogonal polynomials. American Mathematical Society, Providence, Rhode Island (1939)

    MATH  Google Scholar 

  32. Hochstadt, H.: Integral equations, 1st edn. Wiley, New York (1973)

    MATH  Google Scholar 

  33. Kress, R.: Linear integral equation. Springer, New York (1998)

    Google Scholar 

  34. Doha, E.H., Abdelkawy, M.A., Amin, A.Z.M., Baleanu, D.: Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations. Nonlinear Anal.: Model. Control 24(3), 332–352 (2019). https://doi.org/10.15388/NA.2019.3.2

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, Y., Chen, Y., Huang, Y., Yang, W.: Convergence analysis of Legendre-collocation methods for nonlinear Volterra type integro equations. Adv. Appl. Math. Mech. 7(1), 74–88 (2015). https://doi.org/10.4208/aamm.2013.m163

    Article  MathSciNet  MATH  Google Scholar 

  36. Mastroianni, G., Occorsio, D.: Optimal systems of nodes for Lagrange interpolation on bounded intervals. J. Comput. Appl. Math. 134, 325–341 (2001). https://doi.org/10.1016/S0377-0427(00)00557-4

    Article  MathSciNet  MATH  Google Scholar 

  37. Delves, L.M., Mohamed, J.L.: Computational methods for integral equations. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  38. Okayama, T.: Sinc-collocation methods with consistent collocation points for Fredholm integral equations of the second kind (2023). https://doi.org/10.48550/arXiv.2301.12692

Download references

Acknowledgements

The authors are thankful to the reviewers for giving valuable comments and suggestions.

Funding

No funding was obtained for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The first author, Issam Abdennebi, wrote the programs and performed the main computation. The corresponding author, Azedine Rahmoune, conceptualized the manuscript and developed the methodology. Both authors contributed to the analysis and writing the manuscript.

Corresponding author

Correspondence to Azedine Rahmoune.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdennebi, I., Rahmoune, A. Adaptive spectral solution method for Fredholm integral equations of the second kind. Numer Algor (2023). https://doi.org/10.1007/s11075-023-01671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-023-01671-1

Keywords

Mathematics Subject Classification (2010)

Navigation