Skip to main content
Log in

A wavelet-based nested iteration–inexact conjugate gradient algorithm for adaptively solving elliptic PDEs

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In Cohen et al. (Math Comput 70:27–75, 2001), a new paradigm for the adaptive solution of linear elliptic partial differential equations (PDEs) was proposed, based on wavelet discretizations. Starting from a well-conditioned representation of the linear operator equation in infinite wavelet coordinates, one performs perturbed gradient iterations involving approximate matrix–vector multiplications of finite portions of the operator. In a bootstrap-type fashion, increasingly smaller tolerances guarantee convergence of the adaptive method. In addition, coarsening performed on the iterates allow one to prove asymptotically optimal complexity results when compared to the wavelet best N-term approximation. In the present paper, we study adaptive wavelet schemes for symmetric operators employing inexact conjugate gradient routines. Inspired by fast schemes on uniform grids, we incorporate coarsening and the adaptive application of the elliptic operator into a nested iteration algorithm. Our numerical results demonstrate that the runtime of the algorithm is linear in the number of unknowns and substantial savings in memory can be achieved in two and three space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barsch, T.: Adaptive Multiskalenverfahren für elliptische partielle Differentialgleichungen—Realisierung, Umsetzung und numerische Ergebnisse. Shaker (2001)

  2. Barinka, A., Barsch, T., Charton, P., Cohen, A., Dahlke, S., Dahmen, W., Urban, K.: Adaptive wavelet schemes for elliptic problems—implementation and numerical experiments. SIAM J. Sci. Comput. 23, 910–939 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bramble, J., Cohen, A., Dahmen, W.: Multiscale problems and methods in numerical simulations. Lecture Notes in Mathematics. Springer (2003)

  4. Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms I. Commun. Pure Appl. Math. 44, 141–183 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bouras, A., Fraysse, V.: A relaxation strategy for inexact matrix–vector products for Krylov methods. Technical Report TR/PA/00/15, CERFACS, France (2000)

  6. Berrone, S., Kozubek, T.: An adaptive wavelet algorithm for solving elliptic boundary value problems in fairly general domains. SIAM J. Sci. Comput. 28(6), 2114–2138 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burstedde, C., Kunoth, A.: Fast iterative solution of elliptic control problems in wavelet discretization. J. Comput. Appl. Math. 196(1), 299–319 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bramble, J., Pasciak, J., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 37, 1–22 (1981)

    Article  MATH  Google Scholar 

  9. Bramble, J.: Multigrid Methods. Pitman (1993)

  10. Braess, D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics, 2nd edn. Cambridge University Press (2001)

  11. Burstedde, C.: Fast optimised wavelet methods for control problems constrained by elliptic PDEs. Ph.D. Dissertation, Institut für Angewandte Mathematik, Universität Bonn (2005) http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2005/burstedde_carsten

  12. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations—convergence rates. Math. Comput. 70, 27–75 (2001)

    MATH  MathSciNet  Google Scholar 

  13. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet techniques in numerical simulation. In: Stein, E., de Borst, R., Hughes, T. (eds.) Encyclopedia of Computational Mechanics, vol. 1. John Wiley & Sons (2004)

  14. Cohen, A., Daubechies, I., Feauveau, J.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier (2003)

  16. Canuto, C., Tabacco, A., Urban, K.: The wavelet element method, part i: construction and analysis. Appl. Comput. Harmon. Anal. 6, 1–52 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dahmen, W.: Stability of multiscale transformations. J. Fourier Anal. Appl. 4, 341–362 (1996)

    MathSciNet  Google Scholar 

  18. Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997)

    MathSciNet  Google Scholar 

  19. Dahmen, W.: Wavelet methods for pdes—some recent developments. J. Comput. Appl. Math. 128, 133–185 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. DeVore, R.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    MathSciNet  Google Scholar 

  21. Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63, 315–344 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dahmen, W., Kunoth, A., Schneider, R.: Wavelet least square methods for boundary value problems. SIAM J. Numer. Anal. 39, 1985–2013 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Dahmen, W., Kunoth, A., Urban, K.: Biorthogonal spline-wavelets on the interval—stability and moment conditions. Appl. Comput. Harmon. Anal. 6, 132–196 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Dahmen, W., Prößdorf, S., Schneider, R.: Multiscale methods for pseudo-differential equations on smooth manifolds. In: Chui, C.K., Montefusco, L., Puccio, L. (eds.) Proceedings of the International Conference on Wavelets: Theory, Algorithms, and Applications, pp. 385–424. Academic Press (1994)

  25. Dahmen, W., Schneider, R.: Composite wavelet bases for operator equations. Math. Comput. 68, 1533–1567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Dahmen, W., Schneider, R.: Wavelets on manifolds I: construction and domain decomposition. SIAM J. Math. Anal. 31, 184–230 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. DeVore, R., Temlyakov, V.: Some remarks on greedy algorithms. Adv. Comput. Math. 5, 173–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gantumur, T., Harbrecht, H., Stevenson, R.: An optimal adaptive wavelet method without coarsening of the iterands. Math. Comp. 77, 615–629 (2007)

    Article  MathSciNet  Google Scholar 

  29. Golub, G., Ye, Q.: Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM J. Sci. Comput. 21, 1305–1320 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hackbusch, W.: Elliptic Differential Equations: Theory and Numerical Treatment. Springer (1992)

  31. Kunoth, A., Sahner, J.: Wavelets on manifolds: an optimized construction. Math. Comput. 75, 1319–1349 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kunoth, A.: Wavelet-based multiresolution methods for stationary PDEs and PDE-constrained control problems. In: Blowey, J., Craig, A. (eds.) Frontiers in Numerical Analysis (Durham 2004), Universitext, pp. 1–63. Springer (2005)

  33. Oswald, P.: On discrete norm estimates related to multilevel preconditioners in the finite element method. In: Ivanov, K.G., Petrushev, P., Sendov, B. (eds.) Constructive Theory of Functions, Proc. Int. Conf. Varna, pp. 203–214 (1991)

  34. Schneider, R.: Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme. Advances in Numerical Mathematics. Teubner Stuttgart (1998)

  35. Stevenson, R.: On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal. 35(5), 1110–1132 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tchamitchian, P.: Wavelets, functions, and operators. In: Erlebacher, G., Hussaini, M.Y., Jameson, L. (eds.) Wavelets: Theory and Applications, Series in Computational Science and Engineering, pp. 83–181. Oxford University Press (1996)

  37. van den Eshof, J., Sleijpen, G.: Inexact Krylov subspace methods for linear systems. SIAM J. Matrix Anal. A. 26(1), 125–153 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. von Petersdorff, T., Schwab, C.: Fully discrete multiscale Galerkin BEM. In: Dahmen, W., Kurdila, A., Oswald, P. (eds.) Multiscale Wavelet Methods for PDEs, pp. 287–346. Academic Press (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Kunoth.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 611) at Universität Bonn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burstedde, C., Kunoth, A. A wavelet-based nested iteration–inexact conjugate gradient algorithm for adaptively solving elliptic PDEs. Numer Algor 48, 161–188 (2008). https://doi.org/10.1007/s11075-008-9164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9164-0

Keywords

Mathematics Subject Classifications (2000)

Navigation