Skip to main content
Log in

Finding an optimal shape of a curved mechanical beam for enhanced internal resonance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

One of the most interesting nonlinear phenomena of mode coupling is internal resonances, which can promote directed energy transfer from one eigenmode to another, even at small amplitudes in free or forced oscillations. Internal resonances can be highly beneficial for many engineering applications. However, in most cases, internal resonances are encountered either accidentally or by proper tuning of different control parameters during experiments without prior planning. Therefore, the ability to a priori design a mechanical resonator with intentional internal resonance at given amplitudes holds great promise. Here, we show a simple methodological way to manipulate the eigenfrequencies and the coupling between the eigenmodes of a doubly clamped mechanical beam using a genetic algorithm for shape optimization of the initial curvature of the beam. We demonstrate that our methodology can be applied to both 1-to-2 and 1-to-3 internal resonances of micro-beams. Our results pave the way to a new class of design techniques for internal resonance enhancement based on shape optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Notes

  1. Under the assumption of a shallow arch, where terms of order \(O(\tilde{w_0}^n)\) with \(n>1\), and their derivatives, can be neglected.

  2. We omitted here the dispersive coupling terms that stem from the potential \(U_{\textrm{dpr}}=\eta q_1^2q_2^2\), which do not promote energy exchange in 1-to-2 and 1-to-3 IRs [58].

  3. Note that the focus here is only on the resonant coupling terms. Hence, we implicitly disregard the contribution of the resonant terms of each mode that do not stem from the coupling, along with the “dispersive coupling” terms that only shift the frequency of the modes and do not promote modal energy exchange via amplitude modulations. These can, of course, be included as needed.

References

  1. Strogatz, S.H.: Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, Boco Raton (2018)

    Book  Google Scholar 

  2. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (2008)

    Google Scholar 

  3. Rosenberg, S., Shoshani, O.: Amplifying the response of a driven resonator via nonlinear interaction with a secondary resonator. Nonlinear Dyn. 105(2), 1427–1436 (2021). https://doi.org/10.1007/s11071-021-06659-x

    Article  Google Scholar 

  4. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3(1), 1–6 (2012)

    Article  Google Scholar 

  5. Zhao, C., Sobreviela, G., Pandit, M., Du, S., Zou, X., Seshia, A.: Experimental observation of noise reduction in weakly coupled nonlinear mems resonators. J. Microelectromech. Syst. 26(6), 1196–1203 (2017)

    Article  Google Scholar 

  6. Kozinsky, I., Postma, H.C., Bargatin, I., Roukes, M.: Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88(25), 253101 (2006)

    Article  Google Scholar 

  7. Shao, L., Palaniapan, M., Tan, W.: The nonlinearity cancellation phenomenon in micromechanical resonators. J. Micromech. Microeng. 18(6), 065014 (2008)

    Article  Google Scholar 

  8. Juillard, J., Bonnoit, A., Avignon, E., Hentz, S., Kacem, N., Colinet, E.: From mems to nems: Closed-loop actuation of resonant beams beyond the critical duffing amplitude. In: SENSORS, 2008 IEEE, pp. 510–513. IEEE (2008)

  9. Yurke, B., Greywall, D., Pargellis, A., Busch, P.: Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. Phys. Rev. A 51(5), 4211 (1995)

    Article  Google Scholar 

  10. Villanueva, L., Kenig, E., Karabalin, R., Matheny, M., Lifshitz, R., Cross, M., Roukes, M.: Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110(17), 177208 (2013)

    Article  Google Scholar 

  11. Nitzan, S.H., Zega, V., Li, M., Ahn, C.H., Corigliano, A., Kenny, T.W., Horsley, D.A.: Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope. Sci. Rep. 5(1), 1–6 (2015)

    Article  Google Scholar 

  12. Dou, S., Strachan, B.S., Shaw, S.W., Jensen, J.S.: Structural optimization for nonlinear dynamic response. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373(2051), 20140,408 (2015)

    Article  MathSciNet  Google Scholar 

  13. Li, L.L., Polunin, P.M., Dou, S., Shoshani, O., Scott Strachan, B., Jensen, J.S., Shaw, S.W., Turner, K.L.: Tailoring the nonlinear response of mems resonators using shape optimization. Appl. Phys. Lett. 110(8), 081902 (2017)

    Article  Google Scholar 

  14. He, W., Bindel, D., Govindjee, S.: Topology optimization in micromechanical resonator design. Optim. Eng. 13(2), 271–292 (2012)

    Article  MathSciNet  Google Scholar 

  15. Rottenberg, X., Jansen, R., Cherman, V., Witvrouw, A., Tilmans, H., Zanaty, M., Khaled, A., Abbas, M.: Meta-materials approach to sensitivity enhancement of mems baw resonant sensors. In: SENSORS, 2013 IEEE, pp. 1–4. IEEE (2013)

  16. Li, Y., Luo, W., Zhao, Z., Liu, D.: Resonant excitation-induced nonlinear mode coupling in a microcantilever resonator. Phys. Rev. Appl. 17(5), 054015 (2022)

    Article  Google Scholar 

  17. Li, L., Liu, H., Li, D., Zhang, W.: Theoretical analysis and experiment of multi-modal coupled vibration of piezo-driven \(\pi \)-shaped resonator. Mech. Syst. Signal Process. 192, 110223 (2023)

    Article  Google Scholar 

  18. Zhao, W., Rocha, R.T., Alcheikh, N., Younis, M.I.: Dynamic response amplification of resonant microelectromechanical structures utilizing multi-mode excitation. Mech. Syst. Signal Process. 196, 110347 (2023)

    Article  Google Scholar 

  19. Wang, K., Nguyen, C.C.: High-order medium frequency micromechanical electronic filters. J. Microelectromech. Syst. 8(4), 534–556 (1999)

    Article  Google Scholar 

  20. Lopez, J., Verd, J., Uranga, A., Murillo, G., Giner, J., Marigó, E., Torres, F., Abadal, G., Barniol, N.: Vhf band-pass filter based on a single CMOS-MEMS doubleended tuning fork resonator. Proc. Chem. 1(1), 1131–1134 (2009)

    Article  Google Scholar 

  21. Chi, C.Y., Chen, T.L.: Mems gyroscope control systems for direct angle measurements. In: SENSORS, 2009 IEEE, pp. 492–496. IEEE (2009)

  22. Sharma, M., Sarraf, E.H., Baskaran, R., Cretu, E.: Parametric resonance: amplification and damping in mems gyroscopes. Sens. Actuators A 177, 79–86 (2012)

    Article  Google Scholar 

  23. Zhao, C., Montaseri, M.H., Wood, G.S., Pu, S.H., Seshia, A.A., Kraft, M.: A review on coupled mems resonators for sensing applications utilizing mode localization. Sens. Actuators A 249, 93–111 (2016)

    Article  Google Scholar 

  24. Sader, J.E., Hanay, M.S., Neumann, A.P., Roukes, M.L.: Mass spectrometry using nanomechanical systems: beyond the point-mass approximation. Nano Lett. 18(3), 1608–1614 (2018)

    Article  Google Scholar 

  25. Nayfeh, A.H.: Nonlinear Interactions: Analytical, Computational, and Experimental Methods. Wiley, New York (2000)

    Google Scholar 

  26. Chen, C., Zanette, D.H., Czaplewski, D.A., Shaw, S., López, D.: Direct observation of coherent energy transfer in nonlinear micromechanical oscillators. Nat. Commun. 8(1), 1–7 (2017)

    Google Scholar 

  27. Yan, Y., Dong, X., Huang, L., Moskovtsev, K., Chan, H.: Energy transfer into period-tripled states in coupled electromechanical modes at internal resonance. Phys. Rev. X 12(3), 031003 (2022)

    Google Scholar 

  28. Wang, M., Perez-Morelo, D.J., Lopez, D., Aksyuk, V.A.: Persistent nonlinear phase-locking and nonmonotonic energy dissipation in micromechanical resonators. Phys. Rev. X 12(4), 041025 (2022)

    Google Scholar 

  29. Czaplewski, D.A., Strachan, S., Shoshani, O., Shaw, S.W., López, D.: Bifurcation diagram and dynamic response of a mems resonator with a 1:3 internal resonance. Appl. Phys. Lett. 114(25), 254104 (2019)

    Article  Google Scholar 

  30. Gobat, G., Zega, V., Fedeli, P., Guerinoni, L., Touzé, C., Frangi, A.: Reduced order modelling and experimental validation of a mems gyroscope test-structure exhibiting 1:2 internal resonance. Sci. Rep. 11(1), 16,390 (2021)

    Article  Google Scholar 

  31. Eriksson, A.M., Shoshani, O., López, D., Shaw, S.W., Czaplewski, D.A.: Controllable branching of robust response patterns in nonlinear mechanical resonators. Nat. Commun. 14(1), 161 (2023)

    Article  Google Scholar 

  32. Gobat, G., Zega, V., Fedeli, P., Touzé, C., Frangi, A.: Frequency combs in a mems resonator featuring 1:2 internal resonance: ab initio reduced order modelling and experimental validation. Nonlinear Dyn. 111(4), 2991–3017 (2023)

    Article  Google Scholar 

  33. Miles, J.W.: Stability of forced oscillations of a spherical pendulum. Q. Appl. Math. 20, 21–32 (1962)

    Article  MathSciNet  Google Scholar 

  34. Miles, J.: Resonant motion of a spherical pendulum. Phys. D 11(3), 309–323 (1984)

    Article  MathSciNet  Google Scholar 

  35. Johnson, J., Bajaj, A.K.: Amplitude modulated and chaotic dynamics in resonant motion of strings. J. Sound Vib. 128(1), 87–107 (1989)

    Article  MathSciNet  Google Scholar 

  36. Sethna, P.: Vibrations of dynamical systems with quadratic nonlinearities. J. Appl. Mech. 32(3), 576–582 (1965)

    Article  MathSciNet  Google Scholar 

  37. Haddow, A., Barr, A., Mook, D.: Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure. J. Sound Vib. 97(3), 451–473 (1984)

    Article  MathSciNet  Google Scholar 

  38. Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonances in hinged-clamped beams. Nonlinear Dyn. 12(2), 129–154 (1997)

    Article  MathSciNet  Google Scholar 

  39. Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dyn. 20(2), 131–158 (1999)

    Article  MathSciNet  Google Scholar 

  40. Tondl, A.: Autoparametric Resonance in Mechanical Systems. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  41. Czaplewski, D.A., Chen, C., Lopez, D., Shoshani, O., Eriksson, A.M., Strachan, S., Shaw, S.W.: Bifurcation generated mechanical frequency comb. Phys. Rev. Lett. 121(24), 244302 (2018)

    Article  Google Scholar 

  42. Gobat, G., Guillot, L., Frangi, A., Cochelin, B., Touzé, C.: Backbone curves, Neimark-sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1: 2 internal resonance and frequency combs in mems. Meccanica 56(8), 1937–1969 (2021)

    Article  MathSciNet  Google Scholar 

  43. Keşkekler, A., Shoshani, O., Lee, M., van der Zant, H.S., Steeneken, P.G., Alijani, F.: Tuning nonlinear damping in graphene nanoresonators by parametric-direct internal resonance. Nat. Commun. 12(1), 1099 (2021)

    Article  Google Scholar 

  44. Güttinger, J., Noury, A., Weber, P., Eriksson, A.M., Lagoin, C., Moser, J., Eichler, C., Wallraff, A., Isacsson, A., Bachtold, A.: Energy-dependent path of dissipation in nanomechanical resonators. Nat. Nanotechnol. 12(7), 631–636 (2017)

    Article  Google Scholar 

  45. Aravindan, M., Ali, S.F.: Exploring 1:3 internal resonance for broadband piezoelectric energy harvesting. Mech. Syst. Signal Process. 153, 107493 (2021)

    Article  Google Scholar 

  46. Fan, Y., Ghayesh, M.H., Lu, T.F.: High-efficient internal resonance energy harvesting: modelling and experimental study. Mech. Syst. Signal Process. 180, 109402 (2022)

    Article  Google Scholar 

  47. Mathew, J.P., Patel, R.N., Borah, A., Vijay, R., Deshmukh, M.M.: Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nat. Nanotechnol. 11(9), 747–751 (2016)

    Article  Google Scholar 

  48. Keskekler, A., Arjmandi-Tash, H., Steeneken, P.G., Alijani, F.: Symmetry-breaking-induced frequency combs in graphene resonators. Nano Lett. 22(15), 6048–6054 (2022)

    Article  Google Scholar 

  49. Ouakad, H.M., Younis, M.I., Alsaleem, F.M., Miles, R., Cui, W.: The static and dynamic behavior of mems arches under electrostatic actuation. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 49033, pp. 607–616 (2009)

  50. Krylov, S., Dick, N.: Dynamic stability of electrostatically actuated initially curved shallow micro beams. Contin. Mech. Thermodyn. 22(6–8), 445–468 (2010)

    Article  MathSciNet  Google Scholar 

  51. Medina, L., Gilat, R., Krylov, S.: Dynamic release condition in latched curved micro beams. Commun. Nonlinear Sci. Numer. Simul. 73, 291–306 (2019)

    Article  MathSciNet  Google Scholar 

  52. Hajjaj, A.Z., Younis, M.I.: Theoretical and experimental investigation of two-to-one internal resonance in MEMS arch resonators. J. Comput. Nonlinear Dyn. 14(011), 001–1 (2019)

    Google Scholar 

  53. Rosenberg, S., Shoshani, O.: Zero-dispersion point in curved micro-mechanical beams. Nonlinear Dyn. 107, 1–14 (2022)

    Article  Google Scholar 

  54. Touzé, C., Thomas, O., Chaigne, A.: Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes. J. Sound Vib. 273(1–2), 77–101 (2004)

    Article  Google Scholar 

  55. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer, Cham (2013)

    Google Scholar 

  56. Touzé, C.: Normal form theory and nonlinear normal modes: theoretical settings and applications. In: Modal Analysis of Nonlinear Mechanical Systems, pp. 75–160. Springer, Cham (2014)

    Google Scholar 

  57. Shami, Z.A., Shen, Y., Giraud-Audine, C., Touzé, C., Thomas, O.: Nonlinear dynamics of coupled oscillators in 1:2 internal resonance: effects of the non-resonant quadratic terms and recovery of the saturation effect. Meccanica 57(11), 2701–2731 (2022)

    Article  MathSciNet  Google Scholar 

  58. Shoshani, O., Shaw, S.W.: Resonant modal interactions in micro/nano-mechanical structures. Nonlinear Dyn. 104, 1801–1828 (2021)

    Article  Google Scholar 

  59. Woon, S.Y., Querin, O.M., Steven, G.P.: Structural application of a shape optimization method based on a genetic algorithm. Struct. Multidiscip. Optim. 22, 57–64 (2001)

    Article  Google Scholar 

  60. Boyd, J.P.: Chebyshev and Fourier spectral methods. Courier Corporation, Chelmsford (2001)

    Google Scholar 

  61. Trefethen, L.N.: Spectral methods in MATLAB. SIAM (2000)

  62. Yagci, B., Filiz, S., Romero, L.L., Ozdoganlar, O.B.: A spectral-tchebychev technique for solving linear and nonlinear beam equations. J. Sound Vib. 321(1–2), 375–404 (2009)

    Article  Google Scholar 

  63. Frank, W., von Brentano, P.: Classical analogy to quantum mechanical level repulsion. Am. J. Phys. 62(8), 706–709 (1994)

    Article  Google Scholar 

  64. Novotny, L.: Strong coupling, energy splitting, and level crossings: a classical perspective. Am. J. Phys. 78(11), 1199–1202 (2010)

    Article  Google Scholar 

  65. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical table. In: US Department of Commerce. National Bureau of Standards Applied Mathematics series 55 (1965)

  66. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer, Cham (2011)

    Google Scholar 

  67. Shaw, S.W., Rosenberg, S., Shoshani, O.: A hybrid averaging and harmonic balance method for weakly nonlinear asymmetric resonators. Nonlinear Dyn. 111(5), 3969–3979 (2023)

    Article  Google Scholar 

  68. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55. US Government printing office (1968)

    Google Scholar 

  69. Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the young’s modulus of silicon? J. Microelectromech. Syst. 19(2), 229–238 (2010)

    Article  Google Scholar 

  70. Kramer, O., Kramer, O.: Genetic Algorithms. Springer, Cham (2017)

    Google Scholar 

  71. Mirjalili, S., Mirjalili, S.: Genetic algorithm. In: Evolutionary Algorithms and Neural Networks: Theory and Applications, pp. 43–55. Springer, Cham (2019)

    Chapter  Google Scholar 

  72. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multimed. Tools Appl. 80, 8091–8126 (2021)

    Article  Google Scholar 

  73. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Physicists, vol. 67. Springer, Cham (2013)

  74. Shoshani, O., Shaw, S.W., Dykman, M.I.: Anomalous decay of nanomechanical modes going through nonlinear resonance. Sci. Rep. 7(1), 18091 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Steven W. Shaw for critical discussions and invaluable insight that contributed significantly to this work.

Funding

S.R. acknowledges the financial support of the Kreitman School of Advanced Graduate Studies at Ben-Gurion University of the Negev under the Negev-Faran Scholarship. YF and OS acknowledge the financial support of the Pearlstone Center of Aeronautical Engineering Studies at Ben-Gurion University of the Negev. YF is also supported by the Israeli Ministry of Infrastructure under Grant No. 222-11-049. OS is also supported by BSF under Grant No. 2018041, and by ISF under Grant No. 344/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Rosenberg.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Derivation of the nonlinearly coupled ordinary differential equations

Assuming that the motion of the beam is dominated by its first two modes, \(w(x,t)=\phi _1(x)q_1(t)+\phi _2(x)q_2(t)\), where \(\phi _{1,2}\) are calculated from Eq. (8) and satisfy the orthonormality condition \(\langle \phi _k,\phi _l\rangle =\int _0^1\phi _k\phi _ldx=\delta _{kl}\), we substitute w(xt) into Eq. (3) and perform Galerkin projection onto \(\phi _{1,2}\). This procedure results in the following pair of ordinary differential equations

$$\begin{aligned}{} & {} \ddot{q}_{1}+\omega _1^2q_{1}-3\chi \left( \int _0^1{\phi _{1}'^2dx}\int _0^1{\phi _{1}'w_0'dx}\right) q_1^2-\nonumber \\{} & {} \quad 2\chi \left( \int _0^1{\phi _{1}'^2dx}\int _0^1{\phi _{2}'w_0'dx}\right. \nonumber \\{} & {} \quad \left. +2\int _0^1{\phi _{1}'\phi _{2}'dx}\int _0^1{\phi _{1}'w_0'dx} \right) q_1q_2\nonumber \\{} & {} \quad -\chi \left( \int _0^1{\phi _{2}'^2dx}\int _0^1{\phi _{1}'w_0'dx} \right. \nonumber \\{} & {} \quad \left. +2\int _0^1{\phi _{1}'\phi _{2}'dx}\int _0^1{\phi _{2}'w_0'dx} \right) q_2^2\nonumber \\{} & {} \quad +\chi \left( \int _0^1{\phi _{1}'^2dx}\right) ^2 q_{1}^{3}\nonumber \\ {}{} & {} \quad +3\chi \left( \int _0^1{\phi _{1}'^2dx}\int _0^1{\phi _{1}'\phi _{2}'dx}\right) q_1^2q_2\nonumber \\{} & {} \quad +\chi \left[ \!\int _0^1{\phi _{1}'^2dx}\! \int _0^1{\phi _{2}'^2dx}\!\!+\!2\left( \!\int _0^1{\phi _1'\phi _{2}'dx} \right) ^2\!\right] q_1q_2^2\nonumber \\{} & {} \quad +\chi \left( \int _0^1{\phi _{2}'^2dx}\int _0^1{\phi _{1}'\phi _{2}'dx}\right) q_2^3=0, \end{aligned}$$
(15)
$$\begin{aligned}{} & {} \ddot{q}_{2}+\omega _2^2q_{2}-3\chi \left( \int _0^1{\phi _{2}'^2dx}\int _0^1{\phi _{2}'w_0'dx}\right) q_2^2\nonumber \\{} & {} \quad -2\chi \left( \int _0^1{\phi _{2}'^2dx}\int _0^1{\phi _{1}'w_0'dx} \right. \nonumber \\{} & {} \quad \left. +2\int _0^1{\phi _{1}'\phi _{2}'dx}\int _0^1{\phi _{2}'w_0'dx} \right) q_1q_2\nonumber \\{} & {} \quad -\chi \left( \int _0^1{\phi _{1}'^2dx}\int _0^1{\phi _{2}'w_0'dx}\right. \nonumber \\{} & {} \quad \left. +2\int _0^1{\phi _{1}'\phi _{2}'dx}\int _0^1{\phi _{1}'w_0'dx} \right) q_1^2\nonumber \\{} & {} \quad +\chi \left( \int _0^1{\phi _{2}'^2dx}\right) ^2 q_{2}^{3}\nonumber \\ {}{} & {} \quad +3\chi \left( \int _0^1{\phi _{2}'^2dx}\int _0^1{\phi _{1}'\phi _{2}'dx}\right) q_2^2q_1\nonumber \\{} & {} \quad +\chi \!\left[ \int _0^1{\phi _{2}'^2dx}\! \int _0^1{\phi _{1}'^2dx}\!\!+\!2\left( \!\int _0^1\!{\phi _1'\phi _{2}'dx} \right) ^2\!\right] q_2q_1^2\nonumber \\{} & {} \quad +\chi \left( \int _0^1{\phi _{1}'^2dx}\int _0^1{\phi _{1}'\phi _{2}'dx}\right) q_1^3=0, \end{aligned}$$
(16)

which can readily be identified with Eqs. (4)–(5).

Without going into technical details, we outline the derivation of the normal form of the 1-to-2 and 1-to-3 IRs. Since we consider a weakly nonlinear system, Eqs. (4)–(5) can be written as

$$\begin{aligned}{} & {} \ddot{q}_1+\omega _1^2q_1=\epsilon F_1(q_1,q_2),\nonumber \\{} & {} \ddot{q}_2+\omega _2^2q_2=\epsilon F_2(q_1,q_2). \end{aligned}$$
(17)

As the pair of equations in Eq. (17) are close to those of a pair of linear uncoupled oscillators, we can expect that their solutions have a nearly sinusoidal (harmonic) form with unknown, and generally time-varying amplitude and phase. Hence, we seek solutions in the following complex form

$$\begin{aligned} q_1(t)\!=\!A_1(t)e^{i\omega _{1} t}\!+\!c.c.,~q_2(t)=A_2(t)e^{i\omega _{2} t}\!+\!c.c., \nonumber \\ \end{aligned}$$
(18)

where c.c. denotes the complex conjugate of the preceding term. Note that we make no restriction on \(q_{1,2}(t)\) here, as the observed frequencies may well deviate from \(\omega _{1,2}\) if the complex–amplitudes \(A_{1,2}\) rotate in the complex plane. Introducing a constraint on the time derivative of the two modes, \(\dot{q}_{n}=i\omega _{n}A_{n}e^{i\omega _{n}t}+c.c.,~n=1,2\) (which is dictated by the form of this coordinate change), we find from Eq. (17) the following equations for the complex amplitudes

$$\begin{aligned} \dot{A}_1= & {} \epsilon \frac{e^{-i\omega _1t}}{2i\omega _1} F_1(A_1e^{i\omega _{1} t},A_2e^{i\omega _{2} t}),\nonumber \\ \dot{A}_2= & {} \epsilon \frac{e^{-i\omega _2t}}{2i\omega _2} F_2(A_1e^{i\omega _{1} t},A_2e^{i\omega _{2} t}). \end{aligned}$$
(19)

Note that \(F_{1,2}\) contain components that are \(2\pi /\omega _1\) and \(2\pi /\omega _2\) periodic in t. Hence, representing these functions by their corresponding double Fourier series yield

$$\begin{aligned} \dot{A}_1= & {} \frac{\epsilon }{2i\omega _1}\sum _{k,l}f_{1_{k,l}}A_1^k e^{i(k-1)\omega _{1} t}A_2^{l}e^{il\omega _{2} t},\nonumber \\ \dot{A}_2= & {} \frac{\epsilon }{2i\omega _2} \sum _{q,r}f_{2_{q,r}}A_1^q e^{iq\omega _{1} t}A_2^{r}e^{i(r-1)\omega _{2} t}, \end{aligned}$$
(20)

where \(A^{-n}\triangleq \bar{A}^n\) and the over-bar denotes complex-conjugation. Up to this point, the transformations are exact and no approximations have been made.Footnote 3 We now use the small parameter \(\epsilon \) to obtain approximate equations for the evolution of \(A_{1,2}\). As the right-hand sides (RHS) of the pair of equations in Eq. (20) are small (of order \(\epsilon \) in magnitude), the variations of \(A_1\) and \(A_2\) can be either slow (if they are large) or small (if they are fast, e.g., with the frequencies \(\omega _1,~\omega _2\)). We restrict ourselves to large and slow variations, i.e., we neglect all the fast and small terms on the RHS of Eq. (20). Neglecting the terms containing the fast oscillations (\(e^{i n \omega _1t}, ~e^{im\omega _2t},~n,m=\pm 1,\pm 2,...\)) can also be considered as an averaging over the period of the oscillations \(T_{1,2} = 2\pi /\omega _{1,2}\); thus this method is often called the method of averaging.

From Eq. (20), we see that for a non-zero slowly varying RHS, which implies a resonant interaction between the modes, the fast oscillatory terms, \(\omega _1\) and \(\omega _2\) must be rationally related, e.g., \(\omega _2/\omega _1=|(k-1)/l|,~k,l\in \mathbb {Z}\). Note that since k and l can be arbitrary integers, any rationally related frequencies will yield IR. However, due to dissipation, only the lower-order IRs will be observed in practice. For specific values of k and l, we can determine from Eq. (20) the resonant nonlinear coupling terms. The pair \(k=-2,~l=1\) gives 1-to-3 IR with the lowest-order resonant terms \(f_{1_{-2,1}}{\bar{A}}_1^2A_2\) and \(f_{2_{3,0}}A_1^3\) on the RHS of the first and second equations in Eq. (20), respectively. The pair \(k=-1,~l=1\) gives 1-to-2 IR with the lowest-order resonant terms \(f_{1_{-1,1}}{\bar{A}}_1 A_2\) and \(f_{2_{2,0}}A_1^2\) on the RHS of the first and second equations in Eq. (20), respectively. These terms can be readily associated with the single-term coupling potential \(U_{\textrm{cpl}}=\alpha q_1^nq_2\) that yields Eqs. (6)–(7).

Fig. 12
figure 12

Shape functions of the optimal 1-to-2 IR beams that obtained for probabilities combination of \(\{20\%,30\%,50\%\}\) (left) and combination of \(\{30\%,40\%,30\%\}\) (right)

The frequency of oscillation for the isolated modes

Without modal coupling, the equation of motion for the isolated mode can be written as

$$\begin{aligned} \ddot{q}+U'(q)=0. \end{aligned}$$
(21)

where \(U=\omega ^2q^2/2+\beta q^3/3+\gamma q^4/4\) is the potential energy (per unit mass) of the isolated mode. We multiply Eq. (21) by \(\dot{q}\) and integrate with respect to time to obtain the conserved quantity \(\dot{q}^2/2+U(q)=E\), where E is the total energy (per unit mass) of the isolated mode. From the conservation of energy, we find that

$$\begin{aligned} dt=\pm \frac{dq}{\sqrt{2(E-U(q))}}, \end{aligned}$$
(22)

where the ± reflects the change of sign in the velocity \(\dot{q}\) when crossing the turning points \(q^{(1)},q^{(2)}\). In half cycle, the resonator starts its motion from the lower turning point \(q^{(2)}\) with a positive velocity and arrives to the higher turning point \(q^{(1)}\). Therefore, we can write

$$\begin{aligned} \int _{0}^{\frac{T}{2}}{dt}=\int _{q^{(2)}}^{q^{(1)}}{\frac{dq}{\sqrt{2[E-U(q)]}}}. \end{aligned}$$
(23)

Furthermore, we can rewrite the quadratic polynomial under the square root in the following way

$$\begin{aligned} 2[E-U(q)]&=\frac{\gamma }{4}\left( -q^{4}-\frac{4\beta }{3\gamma }q^{3}-\frac{2\omega _{0}^{2}}{\gamma }q^{2}+\frac{4}{\gamma }E\right) \nonumber \\&= \frac{\gamma }{4}(q^{(1)}-q)(q-q^{(2)})\nonumber \\ {}&\quad (q-q^{(3)})(q-q^{(4)}). \end{aligned}$$
(24)

Thus, from Eq. (23), we find that

$$\begin{aligned} \frac{T}{2}&=\sqrt{\frac{2}{\gamma }}\int _{q^{(2)}}^{q^{(1)}}\nonumber \\&\quad \frac{dq}{\sqrt{(q^{(1)}-q)(q-q^{(2)})(q-q^{(3)})(q-q^{(4)})}}. \end{aligned}$$
(25)

We normalize the modal coordinate q by the largest real root \(q^{(1)}\), and hence,

$$\begin{aligned}&\frac{T}{2}=\sqrt{\frac{2}{ q^{(1)}\gamma }}\nonumber \\ {}&\quad \int _{q'^{(2)}}^{1}{}\frac{dq'}{\sqrt{(1-q')(q'-q'^{(2)})(q'-q'^{(3)})(q'-q'^{(4)})}} \end{aligned}$$
(26)

where \(q'=q/q^{(1)}\), \(q'^{(1)}=q^{(1)}/q^{(1)}=1\), \(q'^{(2)}=q^{(2)}/q^{(1)}\), \(q'^{(3)}=q^{(3)}/q^{(1)}\) and \(q'^{(4)}=q^{(4)}/q^{(1)}\). The solution of the elliptic integral in Eq. (26) is given by (cf. Ref. [73], Eq. (259.00))

$$\begin{aligned} T=4g'\sqrt{\frac{2}{\gamma }}K(k'), \end{aligned}$$
(27)

where

$$\begin{aligned} k'^{2}= & {} \frac{1}{4}\frac{(q'^{(1)}-q'^{(2)})^2-(z'^{(1)}-z'^{(2)})^2}{z'^{(1)}z'^{(2)}},\nonumber \\ z'^{(1)^2}= & {} (q'^{(1)}-\mathfrak {R}\{q'^{(3)}\})^2+(\mathfrak {I}\{q'^{(3)}\})^2,\nonumber \\ z'^{(2)^2}= & {} (q'^{(2)}-\mathfrak {R}\{q'^{(3)}\})^2+(\mathfrak {I}\{q'^{(3)}\})^2,\nonumber \\ g'= & {} \frac{1}{\sqrt{(z'^{(1)}z'^{(2)})}}, \end{aligned}$$
(28)

\(K(k')\) is an elliptic integral of the first kind, and \(\mathfrak {R}\{\cdot \}\) and \(\mathfrak {I}\{\cdot \}\) are the real and imaginary parts of \(\{\cdot \}\), respectively. Thus, by switching back to the non-normalized variables \(q, q^{(1)}, q^{(2)}, q^{(3)}\), and \(q^{(4)}\), we find that the fundamental frequency is given by

$$\begin{aligned} \varOmega (E)=\frac{2\pi }{T}=\frac{\pi }{2K(k)}\sqrt{\frac{\gamma }{2}z^{(1)}z^{(2)}}. \end{aligned}$$
(29)

Supplementary figures

See Figs. 12, 13 and 14

Fig. 13
figure 13

Comparison between the 1-to-2 IR beam of generation 50 (left) and 1-to-2 IR optimal beam of generation 89 (right). The upper panels are the energy-frequency backbone curves of the first and second modes with the frequency crossing conditions, and the lower panels are the projections of the numerical simulations of the displacement field w(xt) onto the first two modes of the beam

Fig. 14
figure 14

Projections of the numerical simulations of the displacement field w(xt) onto the first two modes of the beam for 1-to-2 IR with non-trivial initial conditions in a single mode. Left: the non-trivial initial condition is only on the first mode while the second mode is set to zero initial amplitude. Right: the non-trivial initial condition is only on the second mode while the first mode is set to zero amplitude. The first (blue) and the second (red) modes clearly show the energy exchange due to the resonant interaction for both cases. (Color figure online)

Analytical calculation of resonant envelope modulations

We present here a detailed analysis of the amplitude modulations for the 1-to-2 IR (a similar analysis can be conducted for the 1-to-3, see [58]). By making the ansatz \(q_1(t)=A_1(t)e^{i\omega _1t}+cc\) and \(q_2(t)=A_2(t)e^{2i\omega _1t}+cc\), where cc denotes the complex-conjugate of the preceding term, and applying the method of averaging [55], we obtain from Eqs. (12)–(13) the following pair of complex-amplitude equations

$$\begin{aligned} \dot{A}_1&=\frac{3i\gamma _1}{2\omega _1}|A_1|^2A_1+\frac{i\alpha }{\omega _1}A_1^*A_2 +\frac{2i\eta }{\omega _1}A_1|A_2|^2, \end{aligned}$$
(30)
$$\begin{aligned} \dot{A}_2&=-i\varDelta \omega _2A_2+\frac{3i\gamma _2}{4\omega _1}|A_2|^2A_2+\frac{i\alpha }{4\omega _1}A_1^2\nonumber \\&\quad +\frac{i\eta }{\omega _1}|A_1|^2A_2, \end{aligned}$$
(31)

where \(\varDelta \omega _2=2\omega _1-\omega _2\) is the frequency mismatch between the modes. We normalize the complex amplitude equations by \(\ell _{1,2}A_{1,2n}=A_{1,2}\), where \(\ell _1=3^{1/4}\omega _1\sqrt{2/\gamma _1}\) and \(\ell _2=3^{1/4}\omega _1\sqrt{1/\gamma _1}\), the time by \(\tau =\omega _1t\), and obtain the following rescaled equations

$$\begin{aligned} A_{1n}'&=3\sqrt{3}i|A_{1n}|^2A_{1n}+i\frac{\alpha }{\omega _1}\left( \frac{\sqrt{3}}{\gamma _1}\right) ^{\frac{1}{2}}A_{1n}^*A_{2n}\nonumber \\&\quad +\frac{2\sqrt{3}i\eta }{\gamma _1}A_{1n}|A_{2n}|^2=-i\frac{\partial \mathcal {H}}{\partial A_{1n}^*}, \end{aligned}$$
(32)
$$\begin{aligned} A_{2n}'&=-i\varDelta \omega _{2n}A_{2n}+\frac{3i\sqrt{3}}{4}\frac{\gamma _2}{\gamma _1}|A_{2n}|^2A_{2n}\nonumber \\&\quad +i\frac{\alpha }{2\omega _1}\left( \frac{\sqrt{3}}{\gamma _1}\right) ^{\frac{1}{2}}A_{1n}^2+\frac{2\sqrt{3}i\eta }{\gamma _1}|A_{1n}|^2A_{2n}|\nonumber \\&=-i\frac{\partial \mathcal {H}}{\partial A_{2n}^*}, \end{aligned}$$
(33)

where \(\varDelta \omega _{2n}=\varDelta \omega _2/\omega _1\), and

$$\begin{aligned} \mathcal {H}&=\varDelta \omega _{2n}|A_{2n}|^2-\frac{3\sqrt{3}}{2}|A_{1n}|^4-\frac{3\sqrt{3}}{8}\frac{\gamma _2}{\gamma _1}|A_{2n}|^4\nonumber \\&\quad -\frac{\alpha }{2\omega _1}\left( \frac{\sqrt{3}}{\gamma _1} \right) ^{1/2}\left( {A_{1n}^*}^2A_{2n}+A_{1n}^2{A_{2n}^*} \right) \nonumber \\&\quad -\frac{2\sqrt{3}\eta }{\gamma _1}|A_{1n}|^2|A_{2n}|^2 \end{aligned}$$
(34)

is the averaged Hamiltonian of the system which, by construction, is a conserved quantity. The second conserved quantity is an analog of the Manly-Rowe invariant that has the form of \(\mathcal {M}=I+2|A_{2n}|^2\), where \(I=|A_{1n}|^2\) is the action variable. We define the phase difference \(\psi =2 \arg (A_{1n})-\arg (A_{2n})\) as the angle variable, and rewrite Eqs. (32)–(33) using action-angle variables

$$\begin{aligned} I'&=\frac{\partial \mathcal {H}}{\partial \psi }=\frac{\alpha }{\sqrt{2}\omega _1}\left( \frac{\sqrt{3}}{\gamma _1} \right) ^{1/2}(\mathcal {M}-I)^{1/2}I\sin \psi , \end{aligned}$$
(35)
$$\begin{aligned} \psi '&=-\frac{\partial \mathcal {H}}{\partial I}=\frac{\varDelta \omega _{2n}}{2}+3\sqrt{3}I-\frac{3\sqrt{3}}{16}\frac{\gamma _2}{\gamma _1}(\mathcal {M}-I)\nonumber \\&\quad \quad +\frac{\alpha }{\sqrt{2}\omega _1}\left( \frac{\sqrt{3}}{\gamma _1} \right) ^{1/2}\frac{2\mathcal {M}-3I}{2(\mathcal {M}-I)^{1/2}}\cos \psi \nonumber \\&\quad \quad + \frac{\sqrt{3}\eta }{\gamma _1}(\mathcal {M}-2I). \end{aligned}$$
(36)

The dynamics of Eqs. (35)–(36) can be mapped onto the motion of a particle trapped in a potential well [58].

$$\begin{aligned}&\frac{1}{2}I'^2+U_{\textrm{eff}}(I)=0,\nonumber \\&U_{\textrm{eff}}(I)=-\frac{\sqrt{3}\alpha ^2}{4\gamma _1\omega _1^2}(\mathcal {M}-I)I^2\nonumber \\&\quad \quad \quad \quad \quad +\frac{1}{2}\left[ \mathcal {H}-\frac{\varDelta \omega _{2n}}{2}(\mathcal {M}-I)+\frac{3\sqrt{3}}{2}I^2\right. \nonumber \\&\quad \quad \quad \quad \quad \left. +\frac{3\sqrt{3}}{32}\frac{\gamma _2}{\gamma _1}(\mathcal {M}-I)^2 + \frac{\sqrt{3}\eta }{\gamma _1}I(\mathcal {M}-I)\right] ^2. \end{aligned}$$
(37)

The potential \(U_{\textrm{eff}}(I)\) is a quartic polynomial in I parameterized by \(\mathcal {M}\) and \(\mathcal {H}\). It can have a single well or two wells separated by a local maximum [58]. In the case where the local maximum of the double potential well lies above zero, the equation \(U_{\textrm{eff}}(I)=0\) has four real solutions \(I_1>I_2>I_3>I_4\), where depending on the initial condition I(0), the “particle trapped in the potential well” \(I(\tau )\) oscillates either between \(I_1\) and \(I_2\), or between \(I_3\) and \(I_4\). In the first case, the oscillations \(I(\tau )\) between \(I_1\) and \(I_2\) can be described in terms of Jacobi elliptic functions [73]

$$\begin{aligned}{} & {} I(u)=\frac{(I_1-I_2)I_3{\text {sn}}^2(u|m)-(I_1-I_3)I_2}{(I_1-I_2){\text {sn}}^2(u|m)-(I_1-I_3)},\nonumber \\{} & {} u=\tau \sqrt{\frac{3(48\gamma _1\!+\!3\gamma _2\!-\!32\eta )^2}{1024\gamma _1^2}}\frac{2}{\sqrt{(I_1\!-\!I_3)(I_2\!-\!I_4)},}\nonumber \\{} & {} m=\frac{(I_1-I_2)(I_3-I_4)}{(I_1-I_3)(I_2-I_4)}. \end{aligned}$$
(38)

From the above analytical solution, we find that \(q_1=2\ell _1I^{1/2}\cos (\omega _1t+\arg (A_{1n}))\) and \(q_2=2^{1/2}\ell _2(\mathcal {M}-I)^{1/2}\cos (2\omega _1t+\arg (A_{2n}))\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenberg, S., Feldman, Y. & Shoshani, O. Finding an optimal shape of a curved mechanical beam for enhanced internal resonance. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09505-y

Keywords

Navigation