Skip to main content

Advertisement

Log in

Zero-dispersion point in curved micro-mechanical beams

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In doubly clamped curved mechanical beams, there are inherent hardening and softening nonlinearities. Thus, their frequency of oscillation is a non-monotonic function of the energy. However, for a sufficiently high energy level there is a zero-dispersion point, where the frequency of oscillation is locally independent of energy even though the beam oscillates deep in its nonlinear regime. This zero-dispersion point is a highly desirable feature in micro-mechanical beams that are used in sensing and time-keeping applications because it effectively eliminates the amplitude-to-frequency noise conversion, and thereby, stabilizes the oscillation frequency. In this paper, we present a detailed analysis of the conservative strongly nonlinear dynamics of curved micro-mechanical beams. Our analysis includes a numerically validated closed-form analytical solution for the strongly nonlinear oscillation of beam, derivation of the condition for the zero-dispersion point in curved beams, and a design scheme for the optimal initial depth of the curved beam that maximizes the frequency of oscillation and the energy level at the zero-dispersion point. We apply our methodology to a physical MEMS device reported in the literature and find the optimal values for this device. Our analysis provides the first step in the development of design tools for exploiting the inherent nonlinearities of curved micro-mechanical beams for frequency stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Nguyen, C.T.C.: MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(2), 251 (2007)

    Article  Google Scholar 

  2. Van Beek, J., Puers, R.: A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 22(1), 013001 (2011)

    Article  Google Scholar 

  3. Mills, D.L.: Precision synchronization of computer network clocks. ACM SIGCOMM Comput. Commun. Rev. 24(2), 28 (1994)

    Article  Google Scholar 

  4. Schmid, S., Villanueva, L.G., Roukes, M.L.: Fundamentals of nanomechanical resonators, Fundamentals of nanomechanical resonators, vol. 49. Springer, Berlin (2016)

    Book  Google Scholar 

  5. Vig, J.R.: Quartz crystal resonators and oscillators for frequency control and timing applications. A tutorial, Nasa Sti/recon Technical Report N 95, 19519 (1994)

  6. Polunin, P.M., Yang, Y., Dykman, M.I., Kenny, T.W., Shaw, S.W.: Characterization of MEMS resonator nonlinearities using the ringdown response. J. Microelectromech. Syst. 25(2), 297 (2016)

    Article  Google Scholar 

  7. Agarwal, M., Mehta, H., Candler, R.N., Chandorkar, S.A., Kim, B., Hopcroft, M.A., Melamud, R., Bahl, G., Yama, G., Kenny, T.W., et al.: Scaling of amplitude-frequency-dependence nonlinearities in electrostatically transduced microresonators. J. Appl. Phys. 102(7), 074903 (2007)

    Article  Google Scholar 

  8. Demirci, M.U., Nguyen, C.T.C.: A low impedance VHF micromechanical filter using coupled-array composite resonators, in The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS’05., vol. 2 (IEEE, 2005), vol. 2, pp. 2131–2134

  9. Lee, H., Partridge, A., Assaderaghi, F.: Low jitter and temperature stable MEMS oscillators. In: 2012 IEEE international frequency control symposium proceedings (IEEE, 2012), pp. 1–5

  10. Agrawal, D.K., Woodhouse, J., Seshia, A.A.: Observation of locked phase dynamics and enhanced frequency stability in synchronized micromechanical oscillators. Phys. Rev. Lett. 111(8), 084101 (2013)

    Article  Google Scholar 

  11. Antonio, D., Czaplewski, D.A., Guest, J.R., López, D., Arroyo, S.I., Zanette, D.H.: Nonlinearity-induced synchronization enhancement in micromechanical oscillators. Phys. Rev. Lett. 114(3), 034103 (2015)

    Article  Google Scholar 

  12. Shoshani, O., Heywood, D., Yang, Y., Kenny, T.W., Shaw, S.W.: Phase noise reduction in an MEMS oscillator using a nonlinearly enhanced synchronization domain. J. Microelectromech. Syst. 25(5), 870 (2016)

    Article  Google Scholar 

  13. Mestrom, R., Fey, R., Van Beek, J., Phan, K., Nijmeijer, H.: Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens. Actuators A Phys. 142(1), 306 (2008)

    Article  Google Scholar 

  14. Agrawal, D.K., Woodhouse, J., Seshia, A.A.: Synchronization in a coupled architecture of microelectromechanical oscillators. J. Appl. Phys. 115(16), 164904 (2014)

    Article  Google Scholar 

  15. Meirovitch, L.: Elements of vibration analysis, elements of vibration analysis. Engineering& mathematics, McGraw-Hill Science, United States (1975)

    MATH  Google Scholar 

  16. Rebeiz, G.M.: RF MEMS: theory, design, and technology. Wiley, London (2004)

    Google Scholar 

  17. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and nanoresonators, In: Dynamic systems and control conference, vol. 43352 (2008), vol. 43352, pp. 1509–1538

  18. Sobreviela, G., Zhao, C., Pandit, M., Do, C., Du, S., Zou, X., Seshia, A.: Parametric noise reduction in a high-order nonlinear MEMS resonator utilizing its bifurcation points. J. Microelectromech. Syst. 26(6), 1189 (2017)

    Article  Google Scholar 

  19. Huang, L., Soskin, S., Khovanov, I.A., Mannella, R., Ninios, K., Chan, H.B.: Frequency stabilization and noise-induced spectral narrowing in resonators with zero dispersion. Nat. Commun. 10(1), 1 (2019)

    Article  Google Scholar 

  20. Sobreviela, G., Vidal-Álvarez, G., Riverola, M., Uranga, A., Torres, F., Barniol, N.: Suppression of the Af-mediated noise at the top bifurcation point in a MEMS resonator with both hardening and softening hysteretic cycles. Sens. Actuators A Phys. 256, 59 (2017)

    Article  Google Scholar 

  21. Minkoff, J.: The role of AM-to-PM conversion in memoryless nonlinear systems. IEEE Trans. Commun. 33(2), 139 (1985)

    Article  Google Scholar 

  22. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3(1), 1 (2012)

    Article  Google Scholar 

  23. Soskin, S.M., Mannella, R., McClintock, P.V.E.: Zero-dispersion phenomena in oscillatory systems. Phys. Rep. 373(4–5), 247 (2003)

    Article  MathSciNet  Google Scholar 

  24. Kozinsky, I., Postma, H.C., Kogan, O., Husain, A., Roukes, M.L.: Basins of attraction of a nonlinear nanomechanical resonator. Phys. Rev. Lett. 99(20), 207201 (2007)

    Article  Google Scholar 

  25. Greywall, D., Yurke, B., Busch, P., Pargellis, A., Willett, R.: Evading amplifier noise in nonlinear oscillators. Phys. Rev. Lett. 72(19), 2992 (1994)

    Article  Google Scholar 

  26. Yurke, B., Greywall, D., Pargellis, A., Busch, P.: Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. Phys. Rev. A 51(5), 4211 (1995)

    Article  Google Scholar 

  27. Kenig, E., Cross, M., Villanueva, L., Karabalin, R., Matheny, M., Lifshitz, R., Roukes, M.: Optimal operating points of oscillators using nonlinear resonators. Phys. Rev. E 86(5), 056207 (2012)

    Article  Google Scholar 

  28. Villanueva, L., Kenig, E., Karabalin, R., Matheny, M., Lifshitz, R., Cross, M., Roukes, M.: Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110(17), 177208 (2013)

    Article  Google Scholar 

  29. Kenig, E., Cross, M., Moehlis, J., Wiesenfeld, K.: Phase noise of oscillators with unsaturated amplifiers. Phys. Rev. E 88(6), 062922 (2013)

    Article  Google Scholar 

  30. Zhao, C., Sobreviela, G., Pandit, M., Du, S., Zou, X., Seshia, A.: Experimental observation of noise reduction in weakly coupled nonlinear MEMS resonators. J. Microelectromech. Syst. 26(6), 1196 (2017)

    Article  Google Scholar 

  31. Kozinsky, I., Postma, H.C., Bargatin, I., Roukes, M.: Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88(25), 253101 (2006)

    Article  Google Scholar 

  32. Shao, L., Palaniapan, M., Tan, W.: The nonlinearity cancellation phenomenon in micromechanical resonators. J. Micromech. Microeng. 18(6), 065014 (2008)

    Article  Google Scholar 

  33. Juillard, J., Bonnoit, A., Avignon, E., Hentz, S., Kacem, N., Colinet, E.: From MEMS to NEMS: Closed-loop actuation of resonant beams beyond the critical Duffing amplitude. In: SENSORS, 2008 IEEE (IEEE, 2008), pp. 510–513

  34. Kacem, N., Baguet, S., Duraffourg, L., Jourdan, G., Dufour, R., Hentz, S.: Overcoming limitations of nanomechanical resonators with simultaneous resonances. Appl. Phys. Lett. 107(7), 073105 (2015)

    Article  Google Scholar 

  35. Dykman, M., Mannella, R., McClintock, P.V., Soskin, S.M., Stocks, N.: Noise-induced narrowing of peaks in the power spectra of underdamped nonlinear oscillators. Phys. Rev. A 42(12), 7041 (1990)

    Article  Google Scholar 

  36. Miller, N.J., Shaw, S.W., Dykman, M.: Suppressing frequency fluctuations of self-sustained vibrations in underdamped nonlinear resonators. Phys. Rev. Appl. 15(1), 014024 (2021)

    Article  Google Scholar 

  37. Lifshitz, R., Cross, M.: Nonlinear dynamics of nanomechanical and micromechanical resonators. Rev. Nonlinear Dyn. Complex. 1, 1 (2008)

    MATH  Google Scholar 

  38. Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S., Craighead, H.: The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18(5), 055026 (2008)

    Article  Google Scholar 

  39. Ouakad, H.M., Younis, M.I., Alsaleem, F.M., Miles, R., Cui, W.: The static and dynamic behavior of MEMS arches under electrostatic actuation. In: international design engineering technical conferences and computers and information in engineering conference, vol. 49033 (2009), vol. 49033, pp. 607–616

  40. Krylov, S., Dick, N.: Dynamic stability of electrostatically actuated initially curved shallow micro beams. Continu. Mech. Thermodyn. 22(6–8), 445 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Medina, L., Gilat, R., Krylov, S.: Dynamic release condition in latched curved micro beams. Commun. Nonlinear Sci. Numer. Simul. 73, 291 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hajjaj, A.Z., Younis, M.I.: Theoretical and experimental investigation of two-to-one internal resonance in MEMS arch resonators. J. Comput. Nonlinear Dyn. 14, 011001 (2019)

    Article  Google Scholar 

  43. Medina, L., Gilat, R., Krylov, S.: Enhanced efficiency of electrostatically actuated bistable micro switches using bow-like operation. IEEE/ASME Trans. Mechatr. 25(5), 2409–2415 (2020)

    Article  Google Scholar 

  44. Hajjaj, A.Z., Alfosail, F.K., Jaber, N., Ilyas, S., Younis, M.I.: Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part I-linear problem. Nonlinear Dyn. 99(1), 393 (2020)

    Article  Google Scholar 

  45. Hajjaj, A.Z., Alfosail, F.K., Jaber, N., Ilyas, S., Younis, M.I.: Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part II-simultaneous 1: 1 and 2: 1 internal resonances. Nonlinear Dyn. 99(1), 407 (2020)

    Article  Google Scholar 

  46. Ruzziconi, L., Younis, M.I., Lenci, S.: Multistability in an electrically actuated carbon nanotube: a dynamical integrity perspective. Nonlinear Dyn. 74(3), 533 (2013)

    Article  MathSciNet  Google Scholar 

  47. Ruzziconi, L., Lenci, S., Younis, M.I.: An imperfect microbeam under an axial load and electric excitation: nonlinear phenomena and dynamical integrity. Int. J. Bifurc. Chaos 23(02), 1350026 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhu, Y., Espinosa, H.D.: Effect of temperature on capacitive RF MEMS switch performance-a coupled-field analysis. J. Micromech. Microeng. 14(8), 1270 (2004)

    Article  Google Scholar 

  49. Soliman, M., Thompson, J.: Integrity measures quantifying the erosion of smooth and fractal basins of attraction. J. Sound Vib. 135(3), 453 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lenci, S., Rega, G.: Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dyn. 33(1), 71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lenci, S., Rega, G., Ruzziconi, L.: The dynamical integrity concept for interpreting/predicting experimental behaviour: from macro-to nano-mechanics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371(1993), 20120423 (2013)

    Article  MATH  Google Scholar 

  52. Rega, G., Lenci, S.: Identifying, evaluating, and controlling dynamical integrity measures in non-linear mechanical oscillators. Nonlinear Anal. Theory Methods Appl. 63(5–7), 902 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zaitsev, S., Shtempluck, O., Buks, E., Gottlieb, O.: Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 67(1), 859 (2012)

    Article  MATH  Google Scholar 

  54. Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I., Bachtold, A.: Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6(6), 339 (2011)

    Article  Google Scholar 

  55. da Crespo, S.M., Glynn, C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion. J. Struct. Mech. 6(4), 437 (1978)

    Article  Google Scholar 

  56. Nayfeh, A.H., Pai, P.F.: Linear and nonlinear structural mechanics, linear and nonlinear structural mechanics. Wiley, London (2008)

    MATH  Google Scholar 

  57. Younis, M.I.: MEMS linear and nonlinear statics and dynamics, MEMS linear and nonlinear statics and dynamics, vol. 20 (Springer, 2011)

  58. Panovko, Y.G., Gubanova, I.I.: Stability and oscillations of elastic systems, paradoxes, fallacies and new concepts, (1965)

  59. Mises, R.: Über die stabilitätsprobleme der elastizitätstheorie. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 3(6), 406 (1923)

    Article  MATH  Google Scholar 

  60. Nayfeh, A.H., Emam, S.A.: Exact solution and stability of postbuckling configurations of beams. Nonlinear Dyn. 54(4), 395 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  61. Emam, S.A., Nayfeh, A.H.: Non-linear response of buckled beams to 1: 1 and 3: 1 internal resonances. Int. J. Non-Linear Mech. 52, 12 (2013)

    Article  Google Scholar 

  62. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical table. In: US Department of Commerce, (National Bureau of Standards Applied Mathematics series 55, 1965)

  63. Johnson, D.H.: Signal-to-noise ratio. Scholarpedia 1(12), 2088 (2006)

    Article  Google Scholar 

  64. Auckly, D.: Solving the quartic with a pencil. Am. Math. Mon. 114(1), 29 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the Young’s Modulus of Silicon? J. Microelectromech. Syst. 19(2), 229 (2010)

  66. Dou, S., Strachan, B.S., Shaw, S.W., Jensen, J.S.: Structural optimization for nonlinear dynamic response. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373(2051), 20140408 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. Li, L.L., Polunin, P.M., Dou, S., Shoshani, O., Scott Strachan, B., Jensen, J.S., Shaw, S.W., Turner, K.L.: Tailoring the nonlinear response of MEMS resonators using shape optimization. Appl. Phys. Lett. 110(8), 081902 (2017)

    Article  Google Scholar 

  68. Byrd, P.F., Friedman, M.D.: Handbook of elliptic integrals for engineers and physicists, handbook of elliptic integrals for engineers and physicists, vol. 67. Springer, London (2013)

    Google Scholar 

  69. Washizu, K.: Variational methods in elasticity and plasticity. Pergamon press, Oxford (1975)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Prof. Slava Krylov and Prof. Steven W. Shaw for many fruitful conversations and suggestions. The work of the authors is supported by the United States – Israel Binational Science Foundation (BSF) under Grant No. 2018041, and by the Pearlstone Center of Aeronautical Engineering Studies at Ben-Gurion University of the Negev. S.R. acknowledges the financial support of the Kreitman school of advanced graduate studies at Ben-Gurion University of the Negev under the STEM Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Rosenberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Exact solution of the conservative strongly nonlinear dynamics

By rearranging the expression for conservation of energy \({\dot{q}}^2/2+U(q)=E_{\mathrm{tot}}\), we find that

$$\begin{aligned} dt=\pm \frac{dq}{\sqrt{2(E_{\mathrm{tot}}-U(q))}}, \end{aligned}$$
(24)

where the ± reflects the change of sign in the velocity \(\dot{q}\) when crossing the turning points \(q^{(1)},q^{(2)}\). In half cycle, the resonator starts its motion from the lower turning point \(q^{(2)}\) with a positive velocity and arrives to the higher turning point \(q^{(1)}\) . Therefore, we can write

$$\begin{aligned} \int _{0}^{\frac{T}{2}}{dt}=\int _{q^{(2)}}^{q^{(1)}}{\frac{dq}{\sqrt{2[E_{\mathrm{tot}}-U(q)]}}}. \end{aligned}$$
(25)

Furthermore, we can rewrite the quadratic polynomial under the square root sign in the following way

$$\begin{aligned}&2[E_{\mathrm{tot}}-U(q)]\nonumber \\&\quad =\frac{\gamma }{4}\left( -q^{4}-\frac{4\beta }{3\gamma }q^{3}-\frac{2\omega _{0}^{2}}{\gamma }q^{2}+\frac{4}{\gamma }E_{\mathrm{tot}}\right) \nonumber \\&\quad = \frac{\gamma }{4}(q^{(1)}-q)(q-q^{(2)})(q-q^{(3)})(q-q^{(4)}). \end{aligned}$$
(26)

Thus, from Eq. (25) we find that

$$\begin{aligned} \frac{T}{2}&=\sqrt{\frac{2}{\gamma }} \int _{q^{(2)}}^{q^{(1)}}{}\nonumber \\&\quad \frac{dq}{\sqrt{(q^{(1)}-q)(q-q^{(2)})(q-q^{(3)})(q-q^{(4)})}}. \end{aligned}$$
(27)

We normalize the modal coordinate q by the highest real root \(q^{(1)}\), and hence, Eq. (25) yields

$$\begin{aligned} \frac{T}{2}&=\sqrt{\frac{2}{ q^{(1)}\gamma }}\int _{q'^{(2)}}^{1}{}\nonumber \\&\quad \frac{dq'}{\sqrt{(1-q')(q'-q'^{(2)})(q'-q'^{(3)})(q'-q'^{(4)})}} \end{aligned}$$
(28)

where \(q'=q/q^{(1)}\), \(q'^{(1)}=q^{(1)}/q^{(1)}=1\), \(q'^{(2)}=q^{(2)}/q^{(1)}\), \(q'^{(3)}=q^{(3)}/q^{(1)}\) and \(q'^{(4)}=q^{(4)}/q^{(1)}\). The solution of the elliptic integral in Eq. (28) is given by (cf. Ref. [68], Eq. (259.00))

$$\begin{aligned} T=4g'\sqrt{\frac{2}{\gamma }}K(k'), \end{aligned}$$
(29)

where

$$\begin{aligned} k'^{2}= & {} \frac{1}{4}\frac{(q'^{(1)}-q'^{(2)})^2-(z'^{(1)}-z'^{(2)})^2}{z'^{(1)}z'^{(2)}},\nonumber \\ z'^{(1)^2}= & {} (q'^{(1)}-{\mathfrak {R}}\{q'^{(3)}\})^2+({\mathfrak {I}}\{q'^{(3)}\})^2,\nonumber \\ z'^{(2)^2}= & {} (q'^{(2)}-{\mathfrak {R}}\{q'^{(3)}\})^2+({\mathfrak {I}}\{q'^{(3)}\})^2,\nonumber \\ g'= & {} \frac{1}{\sqrt{(z'^{(1)}z'^{(2)})}}, \end{aligned}$$
(30)

\(K(k')\) is an elliptic integral of the first kind, and \({\mathfrak {R}}\{\bullet \}\) and \({\mathfrak {I}}\{\bullet \}\) are the real and imaginary parts of \(\{\bullet \}\), respectively. Thus, by switching back to the non-normalized variables \(q, q^{(1)}, q^{(2)}, q^{(3)}\) and \(q^{(4)}\), we find that the fundamental frequency is given by

$$\begin{aligned} \omega =\frac{2\pi }{T}=\frac{\pi }{2K(k)}\sqrt{\frac{\gamma }{2}z^{(1)}z^{(2)}}, \end{aligned}$$
(31)

and by inverting the relation \({\text {cn}}\tau =[(q^{(1)}-q)z^{(2)}-(q-q^{(2)})z^{(1)}]/[(q^{(1)}-q)z^{(2)}+(q-q^{(2)})z^{(1)}]\), we find that

$$\begin{aligned} q=\frac{q^{(1)}z^{(2)}+q^{(2)}z^{(1)}-(q^{(1)}z^{(2)}-q^{(2)}z^{(1)}){\text {cn}}(\tau |k)}{(z^{(1)}-z^{(2)}){\text {cn}}(\tau |k)+(z^{(1)}+z^{(2)})}, \end{aligned}$$
(32)

where \(\tau =t\sqrt{\frac{\gamma }{2}z^{(1)}z^{(2)}}\).

Appendix B: Quintic order nonlinear equation of motion

We consider the nonlinearities that stem from the midline stretching and induced by the large deflections of the beam compared to its thickness.

Fig. 8
figure 8

Kinematic and free-body diagrams. Left panel: kinematic diagram of a segment from the midline of the beam before and after deformation. Right panel: free-body diagram of an element of the beam after deformation

Following [57], we assume planar motion, linear stress–strain law (i.e. Hooke’s law), an initially curved beam [\(w_0(x)\)], and constant beam properties (EIA and \(\rho \)). From the kinematics of the beam, we find that location of point \(p({{\tilde{x}}},{{\tilde{y}}})\) of the deformed segment (Fig. 8, left panel) is given by

$$\begin{aligned} {\tilde{x}}=x+u, \qquad {\tilde{y}}=w_0+w. \end{aligned}$$
(33)

Thus, by differentiation of Eq. (33), we find that the horizontal and transverse stretches of the segment are given by

$$\begin{aligned}&d{\tilde{x}}=dx+\frac{\partial u}{\partial x}dx=(1+u')dx,\nonumber \\&d{\tilde{y}}=\frac{\partial w_{0}}{\partial x}dx+\frac{\partial w}{\partial x} dx=(w_{0}'+w')dx. \end{aligned}$$
(34)

Consequently, the length of the deformed segment is \(d{{\tilde{s}}}=\sqrt{d{\tilde{x}}^2 + d{\tilde{y}}^2}=dx\sqrt{(1+u')^2+(w_{0}'+w')^2}\), which can be subtracted from the initial length of the segment, \(ds=\sqrt{dx^2 + dy^2}=dx\sqrt{1+w_0'^2}\), and then divided by ds to yield the axial strain

$$\begin{aligned} \varepsilon&=\frac{ds^{*}-ds}{ds}\nonumber \\&\quad =\frac{dx\sqrt{(1+u')^2+(w_{0}'+w')^2}-dx\sqrt{1+w_0'^2}}{dx\sqrt{1+w_0'^2}}\nonumber \\&\approx \sqrt{(1+u')^2+w'^2+2w'w_{0}'}-1, \end{aligned}$$
(35)

where we have assumed that \(w_0'^2\ll 1\). To complete the description of the deformed segment, we also define (see, Fig. 8, left panel)

$$\begin{aligned} \sin {\theta }=\frac{d{\tilde{y}}}{ds^{*}}=\frac{w'+w'_{0}}{\sqrt{(1+u')^2+(w'+w'_{0})^2}}, \end{aligned}$$
(36)
$$\begin{aligned} \cos {\theta }=\frac{d{\tilde{x}}}{ds^{*}}=\frac{1+u'}{\sqrt{(1+u')^2+(w'+w'_{0})^2}}. \end{aligned}$$
(37)

Using Taylor expansion, we find that

$$\begin{aligned} \varepsilon&\approx u'+w'_{0}w'+\frac{w'^{2}}{2}-\frac{w'_{0}w'^{3}}{2}-\frac{w'^{4}}{8}+...\,, \end{aligned}$$
(38)
$$\begin{aligned} \sin {\theta }&\approx w'_{0}+w'-w'_{0}u'-w'u'-\frac{3w'_{0}w'^{2}}{2}\nonumber \\&\quad -\frac{w'^3}{2}+\frac{15w'_{0}w'^{4}}{8}+\frac{3w'^{5}}{8}+...\,, \end{aligned}$$
(39)
$$\begin{aligned} \cos {\theta }&\approx 1-w'_{0}w'-\frac{w'^{2}}{2}+\frac{3w'_{0}w'^{3}}{2}+\frac{w'^4}{8}+...\,. \end{aligned}$$
(40)

Furthermore, the deformed angle at the other end of the deformed segment is approximately \(\theta +\theta 'd{\tilde{x}}\) (Fig. 8, right panel), and therefore,

$$\begin{aligned} \sin {(\theta +\theta 'd{\tilde{x}})}\approx \sin {\theta }+(\sin {\theta })'d{\tilde{x}}+...\,, \end{aligned}$$
(41)
$$\begin{aligned} \cos {(\theta +\theta 'd{\tilde{x}})}\approx \cos {\theta }+(\cos {\theta })'d{\tilde{x}}+...\,. \end{aligned}$$
(42)

Now, we consider the free-body diagram (Fig. 8, right panel) and apply Newton’s second law in the horizontal and transverse directions

$$\begin{aligned}&(N+N'd{\tilde{x}})\cos {(\theta +\theta 'd{\tilde{x}})}-N\cos {\theta }=\rho Ad{\tilde{x}}\ddot{u}, \end{aligned}$$
(43)
$$\begin{aligned}&V-(V+V'd{\tilde{x}})-N\sin {\theta }+(N+N'd{\tilde{x}})\nonumber \\&\times \sin {(\theta +\theta 'd{\tilde{x}})}=\rho Ad{\tilde{x}}\ddot{w}. \end{aligned}$$
(44)

Substitutions of Eq. (42) into Eqs. (43), and (41) into Eq. (44), yield

$$\begin{aligned}&(N\cos {\theta })'=\rho A\ddot{u}, \end{aligned}$$
(45)
$$\begin{aligned}&-V+(N\sin {\theta })'=\rho A\ddot{w}. \end{aligned}$$
(46)

Using the relation between the shear force and the bending moment, \(V=-\frac{\partial M}{\partial x}\), the relation between the bending moment and the beam curvature, \(M=EI\frac{\partial ^2 w}{\partial x ^2}\) [15, 69], and Hooke’s law

$$\begin{aligned} N&=EA\varepsilon =EA\nonumber \\&\quad \left( u'+w'_{0}w'+\frac{w'^{2}}{2}-\frac{w'_{0}w'^{3}}{2}-\frac{w'^{4}}{8}+...\right) , \end{aligned}$$
(47)

we find that Eqs. (45), (46) reduce to

$$\begin{aligned}&\rho A\ddot{u}-EAu''=EA\nonumber \\&\quad \left( \frac{w'^{2}}{2}+w'_{0}w'-\frac{3w'_{0}w'^{3}}{2}-\frac{3w'^{4}}{8} \right) ', \end{aligned}$$
(48)
$$\begin{aligned}&\rho A\ddot{w}+EIw^{IV}=EA\left( u'(w'_{0}+w')+\frac{3w'_{0}w'^{2}}{2}\right. \nonumber \\&\quad \left. +\frac{w'^{3}}{2}-\frac{15w'_{0}w'^{4}}{8}-\frac{3w'^{5}}{8} \right) '. \end{aligned}$$
(49)

Eqs. (48), (49) are a pair of coupled nonlinear partial differential equations that govern the dynamics of the beam. However, in our case of a slender beam with small radius of gyration \(r=\sqrt{I/A}\ll 1\), the analysis can be simplified significantly. In particular, the inertia term in Eq. (48) can be neglected, since the axial natural frequency is much higher than the transverse natural frequency [57], and therefore

$$\begin{aligned} u''=-\left( \frac{w'^{2}}{2}+w'_{0}w'-\frac{3w'_{0}w'^{3}}{2}-\frac{3w'^{4}}{8} \right) '. \end{aligned}$$
(50)

Integrating Eq. (50) twice with respect to x yields

$$\begin{aligned} u&=-\int _{0}^{x}{\left( \frac{w'^{2}}{2}+w'_{0}w'-\frac{3w'_{0}w'^{3}}{2}-\frac{3w'^{4}}{8}\right) dx}\nonumber \\&\quad +c_{1}(t)x+c_{2}, \end{aligned}$$
(51)

where \(c_{1}(t)\) and \(c_{2}(t)\) can be found from the clamped–clamped boundary conditions, i.e. \(u(0,t)=u(\ell ,t)=0\), and are given by

$$\begin{aligned}&c_{1}=\frac{1}{\ell }\int _{0}^{\ell }{\left( \frac{w'^{2}}{2}+w'_{0}w'-\frac{3w'_{0}w'^{3}}{2}-\frac{3w'^{4}}{8}\right) dx},\nonumber \\&c_{2}=0. \end{aligned}$$
(52)

Substituting Eq. (52) into Eq. (51) and the outcome into Eq. (49), we obtain the following single integro-differential equation for the transverse motion of the beam

$$\begin{aligned} \rho&A\ddot{w}+EIw^{IV}=\frac{EA}{2\ell }(w''_{0}+w'')\int _{0}^{\ell }\nonumber \\&\quad {\left( w'^{2}+2w'_{0}w'-3w'_{0}w'^{3}-\frac{3w'^{4}}{4}\right) dx}. \end{aligned}$$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenberg, S., Shoshani, O. Zero-dispersion point in curved micro-mechanical beams. Nonlinear Dyn 107, 1–14 (2022). https://doi.org/10.1007/s11071-021-07015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07015-9

Keywords

Navigation