Skip to main content
Log in

Recurrence-based analysis and controlling switching between synchronous silence and bursting states of coupled generalized FitzHugh-Nagumo models driven by an external sinusoidal current

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the response characteristics of a generalized FitzHugh-Nagumo model under an external sinusoidal current and the synchronization of two neurons coupled with a gap junction. In the autonomous case, we find analytically by the Lindsted’s method that the system can admit tristable activities in silence, subthreshold, and nerve pulse; depending on the conductance parameters and the state of ionic conductance. In the presence of an external sinusoidal current, we find by numerical simulations that neurons can exhibit a coexistence between different spiking patterns and periodic waves, which are well observed in the structure of the recurrence plot. We further study the synchronization between coupled neurons each admitting bistable activities, such as a coexistence between chaotic (active) and silence (inactive) regimes. We apply recurrence analysis tool to reveal the range of the coupling parameter where synchronization occurs, as well as the dynamical transitions between the synchronous coexisting states (hysteresis phenomenon). The coupling strength is an indicator of the phenomenon of synchronization that can also bring the system to any of the desired synchronous attractors. These phenomena of synchronization and the control between synchronous states can be improved by the presence of an external electrical field. The switching of the coupled neurons to bursting patterns or to periodic waves explains the well-known properties of excitatory (switching on) or inhibitory (switching off) synaptic coupling, respectively; while the unstable signal separating the two stable synchronous signals can be taken as the synaptic threshold. Rather, this study adds to our theoretical understanding of the topic and poses new challenges for investigation. Experimental investigations are required to validate these conclusions in real-world settings, and biological implications must be evaluated within the particular framework of the modeling that was done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data from simulations that support the findings of this study are available on request from the Potsdam Institute for Climate Impact Research (PIK).

References

  1. Eckmann, J.P., Oliffson Kamphorst, S., Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)

    Article  Google Scholar 

  2. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  3. Trulla, L.L., Giuliani, A., Zbilut, C.L., Webber, J.: Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A 223(4), 255–260 (1996). https://doi.org/10.1016/S0375-9601(96)00741-4

    Article  MathSciNet  Google Scholar 

  4. Ngamga, E.J., Nandi, A., Ramaswamy, R., Romano, M.C., Thiel, M., Kurths, J.: Recurrence analysis of strange nonchaotic dynamics. Phys. Rev. E 75(3), 036222 (2007). https://doi.org/10.1103/PhysRevE.75.036222

    Article  Google Scholar 

  5. Romano, M.C., Thiel, M., Kurths, J., Kiss, I.Z., Hudson, J.: Detection of synchronization for non-phase-coherent and non-stationary data. Euro- Phys. Lett. 71(3), 466–472 (2005). https://doi.org/10.1209/epl/i2005-10095-1

    Article  Google Scholar 

  6. Facchini, A., Mocenni, C., Marwan, N., Vicino, A., Tiezzi, E.: Nonlinear time series analysis of dissolved oxygen in the Orbetello Lagoon (Italy). Ecol. Modell. 203(3–4), 339–348 (2007). https://doi.org/10.1016/j.ecolmodel.2006.12.001

    Article  Google Scholar 

  7. Proulx, R., Côté, P., Parrott, L.: Multivariate recurrence plots for visualizing and quantifying the dynamics of spatially extended ecosystems. Ecol. Complex. 6(1), 37–47 (2009). https://doi.org/10.1016/j.ecocom.2008.10.003

    Article  Google Scholar 

  8. Nkomidio, Aissatou Mboussi, Ngamga, Eulalie Ketchamen, Nbendjo, Blaise Romeo Nana., Kurths, Jurgen, Marwan, Norbert: Recurrence-based synchronization analysis of weakly coupled bursting neurons under external ELF fields. Entropy 24, 235 (2022). https://doi.org/10.3390/e24020235

    Article  Google Scholar 

  9. Kyrtsou, C., Vorlow, C.E.: Complex Dynamics in Macroeconomics: A Novel Approach 223–238, 11 (2005). https://doi.org/10.1007/3-540-28556-3

  10. Bigdeli, N., Afshar, K.: Characterization of Iran electricity market indices with pay-as-bid payment mechanism. Physica A 388(8), 1577–1592 (2009). https://doi.org/10.1016/j.physa.2009.01.003

    Article  Google Scholar 

  11. Nichols, J.M., Trickey, S.T., Seaver, M.: Damage detection using multivariate recurrence quantification analysis. Mech. Syst. Signal Process. 20(2), 421–437 (2006). https://doi.org/10.1016/j.ymssp.2004.08.007

    Article  Google Scholar 

  12. Sen, A.K., Longwic, R., Litak, G., Górski, K.: Analysis of cycle-to-cycle pressure oscillations in a diesel engine. Mech. Syst. Signal Process. 22(2), 362–373 (2008). https://doi.org/10.1016/j.ymssp.2007.07.015

    Article  Google Scholar 

  13. Goswami, B., Ambika, G., Marwan, N., Kurths, J.: On interrelations of recurrences and connectivity trends between stock indices. Physica A 391, 4364–4376 (2012)

    Article  Google Scholar 

  14. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117, 500–544 (1952)

    Article  Google Scholar 

  15. Moris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35, 193–213 (1981)

    Article  Google Scholar 

  16. Tagne Nkounga, I.B., Moukam Kakmeni, F.M., Camara, B.I., Yamapi, R.: Controling switching between birhythmic states in a new conductance-based bursting neuronal model. Nonlinear Dyn. 107(10), 2887–2902 (2022). https://doi.org/10.1007/s11071-021-07134-3

    Article  Google Scholar 

  17. Tagne Nkounga, I., Moukam Kakmeni, F.M., Yamapi, R.: birhythmic oscillations and global stability analysis of a Conductance-based neuronal model under channel fluctuations. Chaos Solitons Fractals 159, 112126 (2022)

    Article  MathSciNet  Google Scholar 

  18. Tagne Nkounga, I.B., Messée, G., Yamapi, R., Kurths, J.: Switching from active to non active states in a conductance-based neuronal model under electromagnetic induction. Nonlinear Dyn. 111, 771–788 (2022). https://doi.org/10.1007/s11071-022-07842-4

    Article  Google Scholar 

  19. FitzHugh, R.: Impulses and physiological states in theoretical model of nerve membrane. Biophys J 1, 445–466 (1961)

    Article  Google Scholar 

  20. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)

    Article  Google Scholar 

  21. Golomb, D., Rinzel, J.: Clustering in globally coupled inhibitory neurons. Phys. D Nonlinear Phenom. 72, 259–282 (1994)

    Article  Google Scholar 

  22. Dayan, P., Abbott, L.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems; MIT Press: Cambridge. MA, USA (2001)

    Google Scholar 

  23. Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, vol. 12. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  24. Corson, N.: Dynamique d’un modèle neuronal, synchronisation et complexité. Text available at. , Mathématiques[math]. University of Le Havre; (2009). https://tel.archives-ouvertes.fr/tel-00453912/document

  25. Kitajima, H., Kurths, J.: Forced synchronization in Morris-Lecar neurons. Int. J. Bifurc. Chaos 17, 3523–3528 (2007)

    Article  Google Scholar 

  26. Izhikevich, E.M.: Synchronization of elliptic bursters. Siam Rev. 43, 315–344 (2001)

    Article  MathSciNet  Google Scholar 

  27. Bergner, A., Romano, M.C., Kurths, J., Thiel, M.: Synchronization analysis of neuronal networks by means of recurrence plots. In: Lectures in Supercomputational Neurosciences; Beim Graben, P., Zhou, C., Thiel, M., Kurths, J., Eds.; Understanding Complex Systems; Springer: Berlin/Heidelberg, Germany; pp. 177–191 (2008)

  28. Wertheimer, N., Leeper, E.: Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 109, 273–284 (1979)

    Article  Google Scholar 

  29. Moulder, J.E.: Power-frequency fields and cancer. Crit. Rev. Biomed. Eng. 26, 1–116 (1998)

    Article  Google Scholar 

  30. Stuchly, M.A., Dawson, T.W.: Interaction of low-frequency electric and magnetic fields with the human body. Proc. IEEE 88, 643–664 (2000)

    Article  Google Scholar 

  31. Huang, K., Li, Y., Yang, C., Gu, M.: The dynamic principle of interaction between weak electromagnetic fields and living system-Interference of electromagnetic waves in dynamic metabolism. Chin. J. Med. Phys. 14, 205–207 (1996)

    Google Scholar 

  32. Kitio Kwuimya, C.A., Enjieu Kadji, H.G.: Recurrence analysis and synchronization of oscillators with coexisting attractors. Phys. Lett. A 378, 2142–2150 (2014). https://doi.org/10.1016/j.physleta.2014.05.055

    Article  MathSciNet  Google Scholar 

  33. Tagne Nkounga, I.B., Yibo, Xia, Yanchuk, S., Yamapi, R., Kurths, J.: Generalized FitzHugh-Nagumo model with tristable dynamics: deterministic and stochastic bifurcations. Chaos Solitons Fractals 175, 114020 (2023). https://doi.org/10.1016/j.chaos.2023.114020

    Article  MathSciNet  Google Scholar 

  34. Hidekazu, F., Shinji, D., Taishin Nomura, S.: and Shunsuke. Biol. Cybern. 82, 215 (2000)

  35. Ning, Lijuan: Bifurcation analysis in the system with the existence of two stable limit cycles and a stable steady state. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05887-x

    Article  Google Scholar 

  36. Kobe, D.H.: Helmholtz’s theorem revisited. Am. J. Phys. 54, 552–554 (1986)

    Article  Google Scholar 

  37. Yang, F., Xu, Y., Ma, J.: A memristive neuron and its adaptability to external electric field. Chaos 33(2), 023110 (2023). https://doi.org/10.1063/5.0136195

    Article  MathSciNet  Google Scholar 

  38. Wu, F., Guo, Y., Ma, J.: Energy flow accounts for the adaptive property of functional synapses. Sci. China Technol. Sci. 66, 3139–3152 (2023). https://doi.org/10.1007/s11431-023-2441-5

    Article  Google Scholar 

  39. Kyprianidis, I.M., Papachristou, V., Stouboulos, I.N., et al.: Dynamics of coupled chaotic Bonhoeffer-van der Pol oscillators. WSEAS Trans. Syst. 11, 516–526 (2012)

    Google Scholar 

  40. Wang, C., Tang, J., Ma, J.: Minireview on signal exchange between nonlinear circuits and neurons via field coupling. Eur. Phys. J. Spec. Top. 228, 1907–1924 (2019)

    Article  Google Scholar 

  41. LLOYD, N.G.: Lienard systems with several limit cycles Math. Proc. Camb. Phil. Soc. 102, 565 (1987)

    Article  Google Scholar 

  42. Hagedorn, P.: Non-linear oscillations, 2nd edn. Clarendon Press, Oxford (1988)

    Google Scholar 

  43. Kraemer, K.H., Donner, R.V., Heitzig, J., Marwan, N.: Recurrence threshold selection for obtaining robust recurrence characteristics in different embedding dimensions. Chaos 28, 085720 (2018)

    Article  MathSciNet  Google Scholar 

  44. Zbilut, J.P., Webber, C.L., Jr.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171, 199–203 (1992)

    Article  Google Scholar 

  45. Ivanchenko, M.V., Osipov, G.V., Shalfeev, V.D., Kurths, J.: Phase synchronization in ensembles of bursting oscillators. Phys. Rev. Lett. 93, 134101 (2004)

    Article  Google Scholar 

  46. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Moukam Kakmeni François Marie for support and supervision.

Funding

This work was made possible by the financial support from Deutscher Akademischer Austausch Dienst (DAAD) at the Potsdam Institute for Climate Impact Research (PIK) under the Grant Number (91829050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Yamapi.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Exact solutions of the amplitude equation 17

Appendix A: Exact solutions of the amplitude equation 17

Let us rewrite Eq. (17) in the following form:

$$\begin{aligned} x^4+a_3x^3+a_2x^2+a_1x+a_0=0, \end{aligned}$$
(A1)

where,

$$\begin{aligned} a_0= & {} \dfrac{128}{7}\dfrac{\gamma _0}{\gamma _4}, \quad a_1=\dfrac{-32}{7}\dfrac{\gamma _1}{\gamma _4}, \quad a_2=\dfrac{16}{7}\dfrac{\gamma _2}{\gamma _4}, \\ a_3= & {} \dfrac{-10}{7}\dfrac{\gamma _3}{\gamma _4}, \quad x=A^2.\\ \end{aligned}$$

Equation (A1) can be given in the following form:

$$\begin{aligned} y^4+p_1y^2+p_2y+r=0, \end{aligned}$$
(A2)

where,

$$\begin{aligned} r= & {} -\dfrac{3}{256}a_3^4+\dfrac{1}{16}a_3^2a_2-\dfrac{1}{4}a_3a_1+a_0,\\ p_2= & {} \dfrac{1}{8}a_3^3-\dfrac{1}{2}a_2a_3+a_1, \\ p_1= & {} -\dfrac{3}{8}a_3^2+a_2, \quad x=y-\dfrac{a_3}{4}. \end{aligned}$$

Equation (A2) can be transformed in the following form:

$$\begin{aligned} (y^2+\theta y+\beta _1)(y^2-\theta y+\beta _2)=0, \end{aligned}$$
(A3)

where,

$$\begin{aligned} 2\beta _2= & {} \theta ^2+p_1+\dfrac{p_2}{\theta },\nonumber \\ 2\beta _1= & {} \theta ^2+p_1-\dfrac{p_2}{\theta },\nonumber \\ 4\beta _1\beta _2= & {} 4r=(\theta ^2+p_1)^2-\dfrac{p_2^2}{\theta ^2}. \end{aligned}$$
(A4)

The last equation of the system (A4) lead to a following third degree equation with \(\theta ^2\) as solution:

$$\begin{aligned} \eta ^3+b_2\eta ^2+b_1\eta +b_0=0, \end{aligned}$$
(A5)

where,

$$\begin{aligned} b_0 =-p_2^2, \quad b_1=p_1^2-4r, \quad b_2=2p_1, \quad \eta =\theta ^2. \end{aligned}$$

With the following change of variable: \(\eta =\xi -\dfrac{b_2}{3}\), we obtain the cubic equation:

$$\begin{aligned} \xi ^{3} + p\xi +q = 0, \end{aligned}$$
(A6)

where,

$$\begin{aligned} p= & {} b_1-\dfrac{1}{3}b_2^2,\\ q= & {} b_0-\dfrac{1}{3}b_2b_1+\dfrac{2}{27}b_2^3. \end{aligned}$$

Let \(\Delta \) the discriminant of Eq. (A6) define as:

$$\begin{aligned} \Delta = q^{2} + \dfrac{4}{27}p^{3}, \end{aligned}$$
(A7)

The number of solutions depend on the sign of \( \Delta \), then we distingued many following case:

-if \(\Delta \) > 0, Eq. (A5) has one real solution and two complex conjuguate solutions,

$$\begin{aligned} \eta =\root 3 \of {\dfrac{-q+\sqrt{\Delta }}{2}} + \root 3 \of {\dfrac{-q-\sqrt{\Delta }}{2}} -\dfrac{b_2}{3}, \end{aligned}$$
(A8)

-if \( \Delta \) = 0, Eq. (A5) has one real solution and two double real solutions,

$$\begin{aligned} \begin{array}{ll} \eta =2\root 3 \of {\dfrac{-q}{2}}-\dfrac{b_2}{3}, \end{array}\qquad \begin{array}{ll} \eta =-\root 3 \of {\dfrac{-q}{2}}-\dfrac{b_2}{3}, \end{array} \end{aligned}$$
(A9)

-if \( \Delta \) < 0, Eq. (A5) has three real solutions,

$$\begin{aligned}{} & {} \begin{array}{ll} \eta =U + V -\dfrac{b_2}{3};\\ \end{array} \quad \begin{array}{ll} \eta =jU + \bar{j}V -\dfrac{b_2}{3}\\ \end{array} \quad and\nonumber \\{} & {} \quad \begin{array}{ll} \eta =\bar{j}U + jV -\dfrac{b_2}{3}\\ \end{array} \end{aligned}$$
(A10)

with

$$\begin{aligned} j= & {} -\dfrac{1}{2} +\dfrac{i\sqrt{3}}{2}=e^{i\dfrac{2\pi }{3}}, U=\root 3 \of {\dfrac{-q+i\sqrt{-\Delta }}{2}}, \\ V= & {} \root 3 \of {\dfrac{-q-i\sqrt{-\Delta }}{2}}. \end{aligned}$$

Knowing \(\theta ^2=\eta \), we can deduce from Eq. (A4), the parameters \(\beta _1\), \(\beta _2\). The solution y of Eq. (A2) is given by solving the following two second degree equations:

$$\begin{aligned}{} & {} y^2+\theta y+\beta _1=0,\nonumber \\{} & {} y^2-\theta y+\beta _2=0. \end{aligned}$$
(A11)

The existence and the number of solutions of Eq. (A11) depend on the sign of their discriminants \(\Delta _1=\theta ^2-4\beta _1\) and \(\Delta _2=\theta ^2-4\beta _2\). \(\Delta _1\) and \(\Delta _2\) are ensured from the two first equations of (A4) to be non zero. The number and values of y are sumarized in Table 2.

Table 2 Table summarizing the number and values of the possible solutions of Eq. (A11)

The exact solutions of Eq. (17) are found for \(A^2=y+\dfrac{5}{14}\dfrac{\gamma _3}{\gamma _4}>0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagne Nkounga, I.B., Marwan, N., Yamapi, R. et al. Recurrence-based analysis and controlling switching between synchronous silence and bursting states of coupled generalized FitzHugh-Nagumo models driven by an external sinusoidal current. Nonlinear Dyn 112, 8557–8580 (2024). https://doi.org/10.1007/s11071-024-09456-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09456-4

Keywords

Navigation